共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA), characterized by pain and stiffness, swelling, deformity and dysfunction of joints, affects large numbers of population. The purpose of this study was to discover the effects of taurine in human OA chondrocytes and explore the underlying mechanisms. 46 patients with different grades of OA were recruited. Of these patients, 24 underwent total knee replacement and cartilages were harvested. The mRNA expressions of type II collagen (Collagen II) and endoplasmic reticulum (ER) stress markers (GRP78, GADD153 and Caspase-12) in cartilages were quantified by qRT-PCR. Cell viability and apoptosis of patient-derived chondrocytes were assessed by the CCK-8 assay and flow cytometry assay, respectively. Meanwhile, protein levels of Collagen II and ER stress markers both in cartilages and chondrocytes were evaluated by Western blot. The mRNA and protein levels of Collagen II decreased as OA progressed, while the expressions of ER stress markers increased dramatically. H2O2 induced ER stress in chondrocytes, as shown by the significant increase in the expression of ER stress markers, inhibited chondrocyte viability and Collagen II synthesis, promoted apoptosis. However, taurine treatment inhibited these above phenomena. These results indicated that taurine exhibited anti-OA effect by alleviating H2O2 induced ER stress and subsequently inhibiting chondrocyte apoptosis. 相似文献
2.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. In this report chaperone-like activity of SPARC was identified in a thermal aggregation assay in vitro. Ultraviolet circular dichroism (UVCD) spectroscopy determined that SPARC was stable at temperatures up to 50 degrees C. Unfolding and aggregation of the chaperone target protein, alcohol dehydrogenase (ADH), were initiated at 50 degrees C. SPARC inhibited the thermal aggregation of ADH in a concentration-dependent manner, with maximal inhibition at a 1:4 molar ratio of SPARC:ADH. Synergy between the chaperone-like activities of SPARC and alphaB-crystallin, a small heat shock protein and molecular chaperone in the lens, was observed in SPARC-alphaB-crystallin double -/- mice. 相似文献
3.
Mariya T Sweetwyne Rolf A Brekken Gail Workman Amy D Bradshaw Juliet Carbon Anthony W Siadak Carrie Murri E Helene Sage 《The journal of histochemistry and cytochemistry》2004,52(6):723-733
SPARC (osteonectin, BM-40) is a matricellular glycoprotein that is expressed in many embryogenic and adult tissues undergoing remodeling or repair. SPARC modulates cellular interaction with the extracellular matrix (ECM), inhibits cell adhesion and proliferation, and regulates growth factor activity. To explore further the function and activity of this protein in tissue homeostasis, we have developed several monoclonal antibodies (MAbs) that recognize distinct epitopes on SPARC. The MAbs bind to SPARC with high affinity and identify SPARC by ELISA, Western blotting, immunoprecipitation, immunocytochemistry, and/or immunohistochemistry. The MAbs were also characterized in functional assays for potential alteration of SPARC activity. SPARC binds to collagen I and laminin-1 through an epitope defined by MAb 293; this epitope is not involved in the binding of SPARC to collagen III. The other MAbs did not interfere with the binding of SPARC to collagen I or III or laminin-1. Inhibition of the anti-adhesive effect of SPARC on endothelial cells by MAb 236 was also observed. Functional analysis of SPARC in the presence of these novel MAbs now confirms that the activities ascribed to this matricellular protein can be assigned to discrete subdomains. 相似文献
4.
SPARC, a matricellular protein: at the crossroads of cell-matrix. 总被引:17,自引:0,他引:17
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes. 相似文献
5.
Jacqueline T. Hecht Dina Montufar-Solis Glen Decker Jack Lawler Karla Daniels P. Jackie Duke 《Matrix biology》1998,17(8-9)
Cartilage oligomeric matrix protein (COMP) is a large extracellular glycoprotein that is found in the territorial matrix surrounding chondrocytes. Two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1) are caused by mutations in the calcium binding domains of COMP. In this study, we identified two PSACH mutations and assessed the effect of these mutations on redifferentiated chondrocyte structure and function. We confirmed, in vitro, that COMP is retained in enormous cisternae of the rough endoplasmic reticulum (rER) and relatively absent in the PSACH matrix. The rER accumulation may compromise chondrocyte function, leading to chondrocyte death. Moreover, while COMP appears to be deficient in the PSACH matrix, the matrix appeared to be normal but the over-all quantity was reduced. These results suggest that the abnormality in linear growth in PSACH may result from decreased chondrocyte numbers which would also affect the amount of matrix produced. 相似文献
6.
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes. 相似文献
7.
Cell cycle-dependent nuclear location of the matricellular protein SPARC: association with the nuclear matrix. 总被引:11,自引:0,他引:11
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that inhibits cellular adhesion and proliferation. In this study, we report the detection of SPARC in the interphase nuclei of embryonic chicken cells in vivo. Differential partitioning of SPARC was also noted in the cytoplasm of these cells during discrete stages of M-phase: cells in metaphase and anaphase exhibited strong cytoplasmic immunoreactivity, whereas cells in telophase were devoid of labeling. Immunocytochemical analysis of embryonic chicken cells in vitro likewise showed the presence of SPARC in the nucleus. Furthermore, elution of soluble proteins and DNA from these cells indicated that SPARC might be a component of the nuclear matrix. We subsequently examined cultured bovine aortic endothelial cells, which initially appeared to express SPARC only in the cytoplasm. However, after elution of soluble proteins and chromatin, we also detected SPARC in the nuclear matrix of these cells. Embryonic chicken cells incubated with recombinant SPARC were seen to take up the protein and to translocate it to the nucleus progressively over a period of 17 h. These observations provide new information about SPARC, generally recognized as a secreted glycoprotein that mediates interactions between cells and components of the extracellular matrix. The evidence presented in this study indicates that SPARC might subserve analogous functions in the nuclear matrix. 相似文献
8.
《The Journal of cell biology》1985,101(5):1724-1732
We have used a monoclonal antibody specific for a hydrocarbon-induced cytochrome P450 to localize, by electron microscopy, the epitope- specific cytochrome P450. The cytochrome was found in the rough and smooth endoplasmic reticulum (ER) and the nuclear envelope of hepatocytes. Significant quantities of cytochrome P450 were not found in Golgi stacks. We also could not find any evidence of Golgi- associated processing of the Asn-linked oligosaccharide chains of two well-characterized ER membrane glycoprotein enzymes (glucosidase II and hexose-6-phosphate dehydrogenase), or of the oligosaccharides attached to the bulk of the glycoproteins of the ER membrane. We conclude that these ER membrane proteins are efficiently retained during a process of highly selective export from this organelle. 相似文献
9.
The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. 总被引:18,自引:4,他引:18 下载免费PDF全文
The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis. 相似文献
10.
Soluble luminal proteins of the endoplasmic reticulum (ER) are known to be retained by a tetrapeptide retention signal, KDEL. We report in this communication that the KDEL sequence when appended to the carboxy terminus of a cell surface membrane protein, dipeptidyl peptidase IV (DPPIV), resulted in its retention in the endoplasmic reticulum of transfected Madin-Darby canine kidney cells as assessed by indirect immunofluorescence. Selective surface biotinylation revealed that about 90-95% of the expressed DPPIV was retained in the ER. Appendance of the sequence KDEV did not, however, result in ER retention, illustrating the functional specificity of the retention signal. The ER retention was not due to misfolding of the mutant protein, as the mutant proteins remained enzymatically active. Our data suggest that the KDEL receptor is able to recognize and recycle type II membrane proteins containing a carboxyl-terminal KDEL sequence and postulates the existence of such yet to be identified endogenous proteins. 相似文献
11.
SPARC, a matricellular glycoprotein with important biological functions. 总被引:25,自引:0,他引:25
SPARC (secreted protein, acidic and rich in cysteine) is a unique matricellular glycoprotein that is expressed by many different types of cells and is associated with development, remodeling, cell turnover, and tissue repair. Its principal functions in vitro are counteradhesion and antiproliferation, which proceed via different signaling pathways. SPARC consists of three domains, each of which has independent activity and unique properties. The extracellular calcium binding module and the follistatin-like module have been recently crystallized. Specific interactions between SPARC and growth factors, extracellular matrix proteins, and cell surface proteins contribute to the diverse activities described for SPARC in vivo and in vitro. The location of SPARC in the nuclear matrix of certain proliferating cells, but only in the cytosol of postmitotic neurons, indicates potential functions of SPARC as a nuclear protein, which might be involved in the regulation of cell cycle progression and mitosis. High levels of SPARC have been found in adult eye, and SPARC-null mice exhibit cataracts at 1-2 months of age. This animal model provides an excellent opportunity to confirm and explore some of the properties of SPARC, to investigate cataractogenesis, and to study SPARC-related family proteins, e.g., SC1/hevin, a counteradhesive matricellular protein that might functionally compensate for SPARC in certain tissues.(J Histochem Cytochem 47:1495-1505, 1999) 相似文献
12.
Qi Yan David Blake John I Clark E Helene Sage 《The journal of histochemistry and cytochemistry》2003,51(4):503-511
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule. 相似文献
13.
Within the tumor microenvironment is a dynamic exchange between cancer cells and their surrounding stroma. This complex biologic system requires carefully designed models to understand the role of its stromal components in carcinogenesis, tumor progression, invasion, and metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a prototypic matricellular protein at the center of this exchange. Two decades of basic science research combined with recent whole genome analyses indicate that SPARC is an important player in vertebrate evolution, normal development, and maintenance of normal tissue homeostasis. Therefore, SPARC might also play an important role in the tumor microenvironment. Clinical evidence indicates that SPARC expression correlates with tumor progression, but tightly controlled animal models have shown that the role of SPARC in tumor progression is dependent on tissue and tumor cell type. In this Prospectus, we review the current understanding of SPARC in the tumor microenvironment and discuss current and future investigations of SPARC and tumor-stromal interactions that require careful consideration of growth factors, cytokines, proteinases, and angiotropic factors that might influence SPARC activity and tumor progression. 相似文献
14.
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48. 相似文献
15.
Signaling the unfolded protein response from the endoplasmic reticulum 总被引:20,自引:0,他引:20
16.
SPARC (osteonectin/BM-40), a secreted matricellular protein that promotes cellular deadhesion and motility in wound healing, carcinogenesis, and inflammation, binds to the scavenger receptor stabilin-1 in alternatively activated macrophages and undergoes endocytosis and clearance from the extracellular space. Both SPARC and stabilin-1 are expressed by endothelial cells during inflammation, but their interaction in this context is unknown. We have identified a binding site on SPARC for stabilin-1 by a solid-state peptide array coupled with a modified enzyme-linked immunosorbent assay. A monoclonal antibody that recognizes the identified binding site was also characterized that could be an inhibitor for the SPARC-stabilin-1 interaction in macrophages or endothelial cells. 相似文献
17.
V R Lingappa 《Cell biophysics》1991,19(1-3):1-15
I have described recent work that supports several conclusions that might not have been previously expected: first, that stop transfer, like the initiation of translocation, is receptor-mediated; second, that at least some of the topology-determining events at the ER membrane can be regulated (an example is provided where regulation may occur developmentally [PrP] and a possible example where receptor interactions for stop transfer seem to have been dissociated from those of integration in the membrane, in the course of evolution [apo B]); third, that these variations on the universal mechanism of eukaryotic secretory and transmembrane protein biogenesis can occur either through the variations in sequences presented to the common machinery of translocation or through variations in the machinery with which these sequences interact. Thus, on the one hand, at least some of these variations are directed by signal and stop transfer sequence subtypes and, on the other hand, in at least one case, a special cytoplasmic factor distinct from the core machinery for chain translocation also seems to be involved (RRL cytosolic factor effect on PrP topology) in the special handling of the STE stop transfer sequence subtype. In another case, the conserved universal machinery is engaged by a protein (apo B) to carry out an unusual, if not unique, mechanism presumably related to the lipid carrying role of this soluble secretory protein. Whether stop transfer sequence subtypes are involved here remains to be demonstrated, but it is a tempting hypothesis. Taken together, these findings suggest that the ER is more than a barrier to be overcome in protein export. In some cases, it plays a regulatory role in gene expression (e.g., alternate fates of PrP), and in other cases, it plays a role as a specialized assembly line for biogenesis of proteins with unusual properties. It seems likely that many other examples of proteins using these two mechanisms will be found, as well as entirely different variations on the mechanisms of protein biogenesis. A common conceptual theme is likely to be that they are all directed by discrete sequences within the particular newly synthesized proteins engaging both/either the common and/or distinctive component of the cellular machinery for protein biogenesis. 相似文献
18.
Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin 总被引:5,自引:0,他引:5
J. Henderson J. M. Bauly D. A. Ashford S. C. Oliver C. R. Hawes C. M. Lazarus M. A. Venis R. M. Napier 《Planta》1997,202(3):313-323
The localisation of maize (Zea mays L.) auxin-binding protein (ABP1) has been studied using a variety of techniques. At the whole-tissue level, tissue printing
indicated that ABP1 is expressed to similar levels in all cells of the maize coleoptile and in the enclosed leaf roll. Within
cells, the signals from immunofluorescence and immunogold labelling of ultrathin sections both indicated that ABP1 is confined
to the endoplasmic reticulum (ER), none being detected in either Golgi apparatus or cell wall. This distribution is consistent
with targeting motifs in its sequence. These observations are discussed with reference to the various reports which place
a population of ABP1 on the outer face of the plasma membrane, including those suggesting that it is necessary on the cell
surface for rapid, auxin-mediated protoplast hyperpolarisation. We have tested one proposed model to account for release of
ABP1 from the ER, namely that auxin binding induces a conformational change in ABP1 leading to concealment of the KDEL retention
motif. Using double-label immunofluorescence the characteristic auxin-induced rise in Golgi-apparatus signal was found, yet
no change in the distribution of the ABP1 signal was detected. Maize suspension cultures were used to assay for auxin-promoted
secretion of ABP1 into the medium, but secretion was below the limit of detection. This can be ascribed at least partly to
the very active acidification of the medium by these cells and the instability of ABP1 in solution below pH 5.0. In the insect-baculovirus
expression system, in which cell cultures maintain pH 6.2, a small amount of ABP1 secretion, less than 1% of the total, was
detected under all conditions. Insect cells were shown to take up auxin and no inactivation of added auxin was detected, but
auxin did not affect the level of ABP1 in the medium. Consequently, no evidence was found to support the model for auxin promotion
of ABP1 secretion. Finally, quantitative glycan analysis was used to determine what proportion of ABP1 might reach the plasma
membrane in maize coleoptile tissue. The results suggest that less than 15% of ABP1 ever escapes from the ER as far as the
cis-Golgi and less than 2% passes further through the secretory pathway. Such leakage rates probably do not require a specialised
mechanism allowing ABP1 past the KDEL retrieval pathway, but we are not able to rule out the possibility that some ABP1 is
carried through associated with other proteins. The data are consistent with the presence of ABP1 both on the plasma membrane
and in the ER. The relative sizes of the two pools explain the results obtained with immunofluorescence and immunogold labelling
and illustrate the high efficiency of ER retention in plants.
Received: 31 October 1996 / Accepted: 16 December 1996 相似文献
19.
Misfolded proteins in the endoplasmic reticulum (ER) are dislocated to the cytosol to be degraded by the proteasomes. Various plant and bacterial toxins and certain viruses hijack this dislocation pathway to exert their toxicity or to infect cells. In this study, we report a dislocation-dependent reconstituted GFP (drGFP) assay that allows, for the first time, imaging proteins dislocated from the ER lumen to the cytosol in living cells. Our results indicate that both luminal and membrane-spanning ER proteins can be fully dislocated from the ER to the cytosol. By combining the drGFP assay with RNAi or chemical inhibitors of proteins in the Hrd1 ubiquitin ligase complex, we demonstrate that the Sel1L, Hrd1, p97/VCP, and importin β proteins are required for the dislocation of misfolded luminal α-1 antitrypsin. The strategy described in this work is broadly applicable to the study of other types of transmembrane transport of proteins and likely also of viruses and toxins in living cells. 相似文献
20.
Eliot M. Herman Brian W. Tague Leslie M. Hoffman Susanne E. Kjemtrup Maarten J. Chrispeels 《Planta》1990,182(2):305-312
Soluble proteins that reside in the lumen of the endoplasmic reticulum are known to have at their carboxyterminus the tetrapeptides KDEL or HDEL. In yeast and mammalian cells, these tetrapeptides function as endoplasmic reticulum (ER)-retention signals. To determine the effect of an artificially-introduced KDEL sequence at the exact carboxyterminus of a plant secretory protein, we modified the gene of the vacuolar protein phytohemagglutinin-L (PHA) so that the amino-acid sequence would end in LNKDEL rather than LNKIL, and expressed the modified gene in transgenic tobacco with a seed-specific promoter. Analysis of the glycans of PHA showed that most of the control PHA had one endoglycosidase H-sensitive and one endoglycosidase H-resistant glycan, indicating that it had been processed in the Golgi complex. On the other hand, a substantial portion of the PHA-KDEL (about 75% at mid-maturation and 50% in mature seeds) had two endoglycosidase H-sensitive glycans. Phytohemagglutinin with two endoglycosidase H-sensitive glycans is normally found in the ER. Using immunocytochemistry we found that a substantial portion of the PHA-KDEL was present in the ER or accumulated in the nuclear envelope while the remainder was found in the protein storage vacuoles (protein bodies). We interpret these data to indicate that carboxyterminal KDEL functions as an ER retention-retardation signal and causes protein to accumulate in the nuclear envelope as well as in the ER. The incomplete ER retention of this protein which is modified at the exact carboxyterminus may indicate that structural features other than carboxyterminal KDEL are important if complete ER retention is to be achieved.Mention of trademark, proprietary product, or vendor, does not constitute a guarantee or warrenty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.Abbreviations endoH
endoglycosidase H
- ER
endoplasmic reticulum
- Mr
relative molecular mass
- PHA
phytohemagglutinin
- SDS
sodium dodecyl sulfate
- PAGE
polyacrylamide gel electrophoresis
- TBST
Tris-buffered saline containing Tween 20
We thank Debra Donaldson for her contribution to the PHA gene constructions. This work has been supported by grants from the National Science Foundation (Cell Biology) and the Department of Energy (DE-FG03-86ER13497) to Maarten J. Chrispeels. The assistance of the staff of the Electron Microscope Laboratory, USDA, Beltsville is gratefully acknowledged. 相似文献