首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The introduction of a useful new chromogenic substrate for the determination of elastase (EC 3.4.4.7) activity is described. N-acetyl-L-Ala-L-Ala-L-Ala-p-nitroanilide (AcAla3NA) is a new specific elastase substrate whose hydrolysis can be followed spectrophotometrically at 410 nm in a wide pH range. Its rate of hydrolysis by α-chymotrypsin (EC 3.4.4.5) and trypsin (EC 3.4.4.4.) is 0.02% and 0.001% respectively compared to its rate of hydrolysis by elastase. As little as 0.1 μg elastase/ml can be satisfactorily determined. At pH 8, Km = 0.88 mM and kcat = 11.9 sec?1.  相似文献   

2.
Proteinase inhibitor PI9 (PI9) is an intracellular 42-kDa member of the ovalbumin family of serpins that is found primarily in placenta, lung and lymphocytes. PI9 has been shown to be a fast-acting inhibitor of granzyme B in vitro, presumably through the utilization of Glu(340) as the P(1) inhibitory residue in its reactive site loop. In this report, we describe the inhibition of human neutrophil elastase by recombinant human PI9. Inhibition occurred with an overall K(i)' of 221 pM and a second-order association rate constant of 1.5 x 10(5) M(-1) s(-1), indicating that PI9 is a potent inhibitor of this serine proteinase in vitro. In addition, incubation of recombinant PI9 with native neutrophil elastase resulted in the formation of an SDS-resistant 62-kDa complex. Amino-terminal sequence analyses provided evidence that inhibition of elastase occurred through the use of Cys(342) as the reactive P(1) amino acid residue in the PI9 reactive site loop. Thus, PI9 joins its close relatives PI6 and PI8 as having the ability to utilize multiple reactive site loop residues as the inhibitory P(1) residue to expand its inhibitory spectrum.  相似文献   

3.
Five isoinhibitors, proteins that inactivate chymotrypsin and elastase, were isolated from aqueous extracts of the intestinal parasite Ascaris lumbricoides var. suum by affinity chromatography. They were named in the order that they eluted from a CM-Sephadex C-25 column at pH 8.6 using a salt gradient. Isoinhibitor 1, first reported in this paper, is anionic on polyacrylamide gel electrophoresis at pH 9.3. The other four isoinhibitors are cationic on electrophoresis at pH 9.3, separable from each other, and identical with those reported previously [R.J. Peanasky and G. M. Abu-Erreish (1971) in Proceedings International Research Conference on Proteinase Inhibitors (Fritz, H., and Tschesche, H., eds.), pp. 281-293, de Gruyter, New York]. Amino acid compositions show differences between the isoinhibitors. Antibody to isoinhibitor 1 reacts with its self-antigen only. Antibody to isoinhibitor 5 reacts with isoinhibitors 2-5 but not with isoinhibitor 1. Association equilibrium constants show that each of the isoinhibitors interacts most avidly with alpha-chymotrypsin. For isoinhibitor 1, the K alpha for alpha-chymotrypsin was 2.6 X 10(11) M-1, for porcine elastase I 1.6 X 10(10) M-1, and for Subtilisin Carlsberg 3.3 X 10(7) M-1. For isoinhibitors 2-5, the K alpha ranges were 7.1 X 10(10) to 1.3 X 10(11) M-1 for alpha-chymotrypsin, 1.0 X 10(9) to 5.6 X 10(9) M-1 for porcine elastase I, and 6.0 X 10(8) to 1.3 X 10(9) M-1 for subtilisin Carlsberg. Because of the strong affinity of these inhibitors for alpha-chymotrypsin and elastase, two proteins in the normal environment of the nematode, the name isoinhibitors of chymotrypsin/elastase is suggested for these proteins.  相似文献   

4.
During acute inflammation, neutrophil-mediated injury to epithelium may lead to disruption of epithelial function, including the induction of epithelial apoptosis. Herein, we report the effects of neutrophil transmigration and of purified leukocyte elastase on epithelial cell survival. Neutrophil transmigration induced apoptosis of epithelial cells [control monolayers: 5 +/- 1 cells/25 high-power fields (HPF) vs. neutrophil-treated monolayers: 29 +/- 10 cells/HPF, P < 0.05, n = 3 as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay] as did low concentrations (0.1 U/ml) of purified leukocyte elastase (control monolayers: 6.4 +/- 2.5% apoptotic vs. elastase: 26.2 +/- 2.9% apoptotic, P < 0.05, as determined by cytokeratin 18 cleavage). Treatment with elastase resulted in decreased mitochondrial membrane potential, release of cytochrome c to the cytosol, and cleavage of caspases-9 and -3 as determined by Western blot analysis, implicating altered mitochondrial membrane permeability as a primary mechanism for elastase-induced apoptosis. Additionally, incubation of epithelial cells with leukocyte elastase resulted in an early increase followed by a decrease in the phosphorylation of epithelial Akt, a serine/threonine kinase important in cell survival. Inhibition of epithelial Akt before elastase treatment potentiated epithelial cell apoptosis, suggesting that the initial activation of Akt represents a protective response by the epithelial cells to the proapoptotic effects of leukocyte elastase. Taken together, these observations suggest that epithelial cells exhibit a dual response to cellular stress imposed by leukocyte elastase with a proapoptotic response mediated via early alterations in mitochondrial membrane permeability countered by activation of the survival pathway involving Akt.  相似文献   

5.
A potent inhibitor of human leukocyte elastase (EC 3.4.21.37) and porcine pancreatic elastase (EC 3.4.21.36) was purified to homogeneity from human horny layers. It inhibits human leukocyte elastase and porcine pancreatic elastase in a 1:1 molar ratio and shows equilibrium dissociation constants of 6 x 10(-10) M and 1 x 10(-9) M, respectively. Inhibition of plasmin, trypsin, alpha-chymotrypsin, and cathepsin G was not observed. This inhibitor proved to be an acid stable basic peptide with an isoelectric point of 9.7. The complete amino acid sequence appears to be unique with 38% homology to the C-terminal half of antileukoprotease. The sequence shows that the inhibitor is composed of 57 amino acids and predicts a Mr of 7017. The high affinity as well as the apparent specificity for elastases suggests a functional role in preventing elastase-mediated tissue proteolysis. It is suggested that the term "elafin" be used to designate this inhibitor.  相似文献   

6.
A small combinatorial library of LDTI mutants (5.2 x 10(4)) restricted to the P1-P4' positions of the reactive site was displayed on the pCANTAB 5E phagemid, and LDTI fusion phages were produced and selected for potent neutrophil elastase and plasmin inhibitors. Strong fusion phage binders were analyzed by ELISA on enzyme-coated microtiter plates and the positive phages had their DNA sequenced. The LDTI variants: 29E (K8A, I9A, L10F, and K11F) and 19E (K8A, K11Q, and P12Y) for elastase and 2Pl (K11W and P12N), 8Pl (I9V, K11W, and P12E), and 10Pl (I9T, K11L, and P12L) for plasmin were produced with a Saccharomyces cerevisiae expression system. New strong elastase and plasmin inhibitors were 29E and 2Pl, respectively. LDTI-29E was a potent and specific neutrophil elastase inhibitor K(i) =0.5 nM), affecting no other tested enzymes. LDTI-2Pl was the strongest plasmin inhibitor ( K(i) =1.7nM) in the LDTI mutant library. This approach allowed selection of new specific serine proteinase inhibitors for neutrophil elastase and plasmin (a thrombin inhibitor variant was previously described), from a unique template molecule, LDTI, a Kazal type one domain inhibitor, by only 2-4 amino acid replacements. Our data validate this small LDTI combinatorial library as a tool to generate specific serine proteinase inhibitors suitable for drug design and enzyme-inhibitor interaction studies.  相似文献   

7.
Proteolysis of the extracellular matrix (ECM) is a key event in tumor growth and progression. The breakdown of ECM can lead to the generation of bioactive fragments that promote cell growth and spread. EMILIN1, a multidomain glycoprotein expressed in several tissues, exerts a crucial regulatory function through the engagement of α4/α9 integrins. Unlike the majority of ECM molecules that elicit a proliferative program, the signals emitting from EMILIN1 engaged by α4/α9β1 integrins are antiproliferative. In this study, aimed to demonstrate if the suppressor role of EMILIN1 was related to its structural integrity, we tested the possibility that EMILIN1 could be specifically cleaved. Among the proteolytic enzymes released in the tumor microenvironment we showed that neutrophil elastase cleaved EMILIN1 in three/four major fragments. The consequence of this proteolytic process was the impairment of its anti-proliferative role. Accordingly, EMILIN1 was digested in sarcomas and ovarian cancers. Sarcoma specimens were infiltrated by neutrophils (PMNs) and stained positively for elastase. The present findings highlight the peculiar activity of PMN elastase in disabling EMILIN1 suppressor function.  相似文献   

8.
The granule proteases of human neutrophils are thought to be responsible for the connective tissue destruction associated with certain inflammatory diseases. Using a model system for the degradation of a macromolecular connective tissue substrate, purified neutrophil elastase and cathepsin G were both individually able to degrade cartilage matrix proteoglycan and this degradation was blocked by the appropriate specific inhibitors. Neutrophil granule lysate also produced cartilage matrix degradation but little inhibition of degradation occurred when either elastase or cathepsin G inhibitor was used alone. However, a combination of elastase and cathepsin G inhibitors each at 100 microM or each at 10 microM blocked cartilage matrix degradation by 89% +/- 1 and 65% +/- 9 (mean +/- SEM, n = 3), respectively. The magnitude of the cartilage degradation mediated by neutrophil lysate, and its sensitivity to specific inhibitors, was reproduced using purified elastase and cathepsin G at the concentrations at which they are present in neutrophil lysate. Human neutrophils stimulated with opsonized zymosan degraded cartilage matrix in a dose-dependent manner in the presence of serum antiproteases. Supernatants from stimulated neutrophils cultured in the presence of serum did not degrade cartilage matrix, indicating that neutrophil mediated degradation in the presence of serum was confined to the protected subjacent region between the inflammatory cell and the substratum. A combination of elastase and cathepsin G inhibitors each at 500 microM or each at 100 microM blocked subjacent cartilage matrix degradation by stimulated human neutrophils by 91% +/- 3 and 54% +/- 8 (mean +/- SEM, n = 5), respectively, whereas either the elastase or cathepsin G inhibitor alone was much less effective. These studies demonstrate that neutrophil-mediated cartilage matrix degradation is produced primarily by elastase and cathepsin G. Furthermore, these results support the hypothesis that inflammatory neutrophils form zones of close contact with substratum that exclude serum antiproteases and that this subjacent degradation of cartilage matrix by stimulated neutrophils can be blocked by a combination of synthetic elastase and cathepsin G inhibitors.  相似文献   

9.
Pseudomonas aeruginosa secretes elastase in a multistep process which begins with the synthesis of a preproelastase (53.6 kDa) encoded by lasB, is followed by processing to proelastase (51 kDa), and concludes with the rapid accumulation of mature elastase (33 kDa) in the extracellular environment. In this study, mutants of P. aeruginosa were constructed by gene replacement which expressed lasB1, an allele altered in vitro at an active-site His-223-encoding codon. The lasB1 allele was exchanged for chromosomal lasB sequences in two strain backgrounds, FRD2 and PAO1, through a selectable-cassette strategy which placed a downstream Tn501 marker next to lasB1 and provided the selection for homologous recombination with the chromosome. Two lasB1 mutants, FRD720 and PDO220, were characterized, and their culture supernatants contained greatly reduced proteolytic (9-fold) and elastolytic (14- to 20-fold) activities compared with their respective parental lasB+ strains. This was primarily due to the effect of His-223 substitution on substrate binding by elastase and thus its proteolytic activity. However, the concentration of supernatant elastase antigen was also reduced (five- to sevenfold) in the mutant strains compared with the parental strains. An immunoblot analysis of cell extracts showed a large accumulation of 51-kDa proelastase within lasB1 mutant cells which was not seen in wild-type cell extracts. A time course study showed that production of extracellular elastase was inefficient in the lasB1 mutants compared with that of parental strains. This showed that expression of an enzymatically defective elastase inhibits proper processing of proelastase and provides further evidence for autoproteolytic processing of proelastase in P. aeruginosa. Unlike the parental strains, culture supernatants of the lasB1 mutants contained two prominent elastase species that were 33 and 36 kDa in size. Extracellular 51-kDa proelastase was barely detectable, even though it accumulated to high concentrations within the lasB1 mutant cells. These data suggest that production of an enzymatically defective elastase affects proper secretion because autoproteolytic processing of proelastase is necessary for efficient localization to the extracellular milieu. The appearance of reduced amounts of extracellular elastase and their sizes of 33 and 36 kDa suggest that lasB1-encoded elastase was processed by alternate, less-efficient processing mechanisms. Thus, proelastase must be processed by removal of nearly all of the 18-kDa propeptide before elastase is a protein competent for extracellular secretion.  相似文献   

10.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Bronchial leucocyte proteinase inhibitor (BLPI) is an 11 000 Mr protein found in human mucous secretions. This inhibitor apparently controls the serine proteinases elastase and cathepsin G, released from extravascular polymorphonuclear leucocytes. A simple, single-step chromatographic procedure for the isolation of BLPI based on its affinity for chymotrypsin was developed. The purified inhibitor was homogeneous by electrophoresis and gel filtration. Amino acid analyses were in close agreement with previous reports, and showed BLPI to be rich in proline and cystine, but lacking histidine. We have further characterized the role of BLPI with respect to human leucocyte elastase and cathepsin G by close examination of the kinetic parameters. Additionally, we have determined the kinetics of association (kon) and dissociation (koff) for BLPI with bovine trypsin and chymotrypsin. Equilibrium dissociation constants (Ki) of 1.87 X 10(-10) M, 4.18 X 10(-9) M, 8.28 X 10(-9) M and 2.63 X 10(-8) M were obtained for human leucocyte elastase, cathepsin G, bovine trypsin and chymotrypsin, respectively. These results are discussed with respect to BLPI's possible function in vivo and its role relative to other inhibitors in bronchial secretions.  相似文献   

12.
A simple and rapid procedure is described for the separation of the human leucocyte enzymes alanine aminopeptidase, cathepsin G, collagenase, elastase and myeloperoxidase. The enzymes are prepared from leucocytes, obtained from buffy coat, by repeated extraction with buffer A(1 M salt concentration). The pooled extracts are successively subjected to batch adsorption on concanavalin A-Sepharose, gel filtration on Sephacryl S-300, affinity chromatography on collagen-Sepharose 4-B, batch adsorption on CM-Sephadex C-50 and adsorption chromatography on hydroxyapatite. The yields of the isolated enzymes of a typical preparation are 47% alanine aminopeptidase, 9% cathepsin G, 90% latent and active collagenase, 23% elastase and approximately 100% myeloperoxidase with respect to the pooled extracts. The cathepsin G, collagenase and elastase preparations are essentially free from other proteolytic enzymes and may be used without further purifications.  相似文献   

13.
Prenyl- and pyrano-xanthones derived from 1,3,6-trihydroxy-9H-xanthen-9-one, a basic backbone of gambogic acid (GA), were synthesized and evaluated for in vitro cytotoxic effects against four human cancer cell lines (KB, KBvin, A549, and DU-145) and anti-inflammatory activity toward superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB. Among them, prenylxanthones 7-13 were generally less active than pyranoxanthones 14-21 in both anticancer and anti-inflammatory assays. Furthermore, two angular 3,3-dimethypyranoxanthones (16 and 20) showed the greatest and selective activity against the KBvin multidrug resistant (MDR) cell line with IC(50) values of 0.9 and 0.8 μg/mL, respectively. An angular 3-methyl-3-prenylpyranoxanthone (17) selectively inhibited elastase release with 200 times more potency than phenylmethylsulfonyl fluoride (PMSF), the positive control.  相似文献   

14.
Proteolytic degradation of extracellular matrix is thought to play an important role in many lung disorders. In the current study, human lung fibroblasts were cast into type I collagen gels and floated in medium containing elastase, cytomix (combination of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma), or both. After 5 days, gel collagen content was determined by measuring hydroxyproline. Elastase alone did not result in collagen degradation, but in the presence of fibroblasts, elastase reduced hydroxyproline content to 75.2% (P < 0.01), whereas cytomix alone resulted in reduction of hydroxyproline content to 93% (P < 0.05). The combination of elastase and cytomix reduced hydroxyproline content to 5.2% (P < 0.01). alpha(1)-Proteinase inhibitor blocked this synergy. Gelatin zymography and Western blot revealed that matrix metalloproteinase (MMP)-1, -3, and -9 were induced by cytomix and activated in the presence of elastase. Tissue inhibitor of metalloproteinase (TIMP)-1 and -2 were also induced by cytomix but were cleaved by elastase. We conclude that a synergistic interaction between cytomix and elastase, mediated through cytokine induction of MMP production and elastase-induced activation of latent MMPs and degradation of TIMPs, can result in a dramatic augmentation of collagen degradation. These findings support the notion that interaction among inflammatory mediators secreted by mononuclear cells and neutrophils can induce tissue cells to degrade extracellular matrix. Such a mechanism may contribute to the protease-anti-protease imbalance in emphysema.  相似文献   

15.
The cleaved approximately 22-kDa form of Endothelial-Monocyte Activating Polypeptide [mature (m)EMAP II] functions as a potent inhibitor of tumor growth. Although the anti-tumor effect of mEMAP II has been described, little is known regarding the cleavage of mEMAP II from its precursor form (pEMAP II). We determined that pEMAP II is expressed at the cell membrane surface and proteinases MMP-9, elastase, and cathepsin L release protein fragments consistent with mEMAP II molecular mass. MMP-9 and elastase generate a approximately 25-26 kDa spanning fragments, while cathepsin L generates a approximately 22 kDa fragment. Although several fragments are processed from pEMAP II within a 44 AA residue stretch, cathepsin L cleaves pEMAP II within 4 amino acids of the determined N-terminal sequence, suggesting that this region is sensitive to proteinases.  相似文献   

16.
A series of compounds combining the beta-lactam and polyphenol scaffold have been prepared and evaluated for inhibition of human leukocyte elastase and matrix metallo-proteases MMP-2 and MMP-9. The design of these compounds has been based on the 'overlapping-type' strategy where two pharmacophores are linked in a single molecule. The most powerful compound against elastase was an N-galloyl-4-alkyliden beta-lactam, [3-[1-(tert-butyl-dimethyl-silanyloxy)-ethyl]-4-oxo-1-(3,4,5-tris-benzyloxy-benzoyl)-azetidin-2-ylidene]-acetic acid ethylester, with an IC50 of 0.5 microM; while the most powerful against MMP-2 was a 4-alkyliden beta-lactam arylated on the C-3 hydroxy side chain (3,5-bis-benzyloxy-4-hydroxy-benzoic acid 1-(2-benzyloxycarbonylmethylene-4-oxo-azetidin-3-yl)-ethyl ester) with an IC50 of 4 microM. Of the total 35 compounds tested, high levels of inhibition of elastase and of MMPs were separately exerted by distinct molecules.  相似文献   

17.
A serine protease inhibitor, termed TsCEI, was purified from adult-stage Trichuris suis by acid precipitation, affinity chromatography (elastase-agarose), and reverse-phase HPLC. The molecular weight of TsCEI was estimated at 6.437 kDa by laser desorption mass spectrometry. TsCEI potently inhibited both chymotrypsin (K(i) = 33.4 pM) and pancreatic elastase (K(i) = 8.32 nM). Neutrophil elastase, chymase (mouse mast cell protease-1, mMCP-1), and cathepsin G were also inhibited by TsCEI, whereas trypsin, thrombin, and factor Xa were not. The cDNA-derived amino acid sequence of the mature TsCEI consisted of 58 residues including 9 cysteine residues with a molecular mass of 6.196 kDa. TsCEI displayed 48% sequence identity to a previously characterized trypsin/chymotrypsin inhibitor of T. suis, TsTCI. TsCEI showed 36% sequence identity to a protease inhibitor from the hemolymph of the honeybee Apis mellifera. Sequence similarity was also detected with the trypsin/thrombin inhibitor of the European frog Bombina bombina, the elastase isoinhibitors of the nematode Anisakis simplex, and the chymotrypsin/elastase and trypsin inhibitors of the nematode Ascaris suum. The inhibitors of T. suis, an intestinal parasite of swine, may function as components of a parasite defense mechanism by modulating intestinal mucosal mast cell-associated, protease-mediated, host immune responses.  相似文献   

18.
A new class of carbamylating agents based on the cyclosulfamide scaffold is reported. These compounds were found to be efficient time-dependent inhibitors of human neutrophil elastase (HNE). Exploitation of the three sites of diversity present in the cyclosulfamide scaffold yielded compounds which inhibited HNE but not proteinase 3 (PR 3) or bovine trypsin. The findings reported herein suggest that the introduction of appropriate recognition elements into the cyclosulfamide scaffold may lead to highly selective agents of potential value in the design of activity-based probes suitable for investigating proteases associated with the pathogenesis of chronic obstructive pulmonary disease.  相似文献   

19.
Abstract In order to determine whether non-elastase-producing strains of Pseudomonas aeruginosa such as N-10, PA103 and IFO3080 can express foreign elastase genes, we introduced elastase genes from P. aeruginosa IFO3455 (elastase-producing) as well as from PA103 and N-10 into non-elastase-producing P. aeruginosa strains. Results suggested that gene expression, secretion, and precursor processing systems of elastase were essentially normal in P. aeruginosa N-10 and IFO3080. Our studies using various elastase genes showed that both the elastase structural gene and 5'-upstream regions of P. aeruginosa PA103 were also normal. This was confirmed by the finding that P. aeruginosa N-10 and IFO3080 which carry the PA103 elastase gene produced elastase. Several deleted or chimeric genes were constructed using the 5'-upstream regions of elastase genes from P. aeruginosa N-10 or PA103 and studies of expression revealed that two individual DNA bases seem to be important in suppressing P. aeruginosa N-10 elastase gene expression. Possible reasons for the lack of elastase in these non-elastase-producing strains are discussed.  相似文献   

20.
The acid-labile inter-alpha-trypsin inhibitor is cleaved enzymatically in vivo, liberating a smaller acid-stable inhibitor. The molar ratio of native inhibitor to this smaller inhibitor in plasma is significantly changed in some severe cases of inflammation and kidney injury. To clarify this observation on a molecular basis, the action of four different types of proteinases (trypsin, plasmin, kallikrein and granulocyte elastase) on the inter-alpha-trypsin inhibitor was studied. The initial rate of cleavage of the inter-alpha-trypsin inhibitor by a 1.3-fold molar excess of proteinase over inhibitor was found to be 4375 nM x min-1 with granulocyte elastase, 860 nM x min-1 with trypsin, 67 nM x min-1 with plasmin, and 0.3 nM X min-1 with kallikrein. Obviously, of the enzymes studied so far, the granulocyte elastase known to be released during severe inflammatory processes is by far the most potent proteinase in the transformation of the inter-alpha-trypsin inhibitor. The inter-alpha-trypsin inhibitor and its cleavage products inhibit bovine trypsin very strongly (Ki = 10(-9)--10(-11) M), porcine plasmin much less strongly, human plasmin very weakly and pancreatic kallikrein practically not at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号