首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial background has been demonstrated to influence maximal oxygen uptake (VO2max, in mL kg?1 min?1), but this genetic influence can be compensated for by regular exercise. A positive correlation among electron transport chain (ETC) coupling, ATP and reactive oxygen species (ROS) production has been established, and mitochondrial variants have been reported to show differences in their ETC performance. In this study, we examined in detail the VO2max differences found among mitochondrial haplogroups. We recruited 81 healthy male Spanish Caucasian individuals and determined their mitochondrial haplogroup. Their VO2max was determined using incremental cycling exercise (ICE). VO2max was lower in J than in non-J haplogroup individuals (P = 0.04). The H haplogroup was responsible for this difference (VO2max; J vs. H; P = 0.008) and this group also had significantly higher mitochondrial oxidative damage (mtOD) than the J haplogroup (P = 0.04). In agreement with these results, VO2max and mtOD were positively correlated (P = 0.01). Given that ROS production is the major contributor to mtOD and consumes four times more oxygen per electron than the ETC, our results strongly suggest that ROS production is responsible for the higher VO2max found in the H variant. These findings not only contribute to a better understanding of the mechanisms underneath VO2max, but also help to explain some reported associations between mitochondrial haplogroups and mtOD with longevity, sperm motility, premature aging and susceptibility to different pathologies.  相似文献   

2.
The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.  相似文献   

3.
《BBA》2014,1837(2):226-231
It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present.  相似文献   

4.
The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   

5.
6.
Obesity is a global metabolic disease anchored by a lack of physical activity lipid disturbances. Hitherto, betatrophin is a potential liver-derived hormone that regulates lipid metabolism. A total of 26 selected onset obese individuals (BMI range ± 28–31) were enrolled in this study and given moderate-intensity exercise. Importantly, our data show that acute moderate-intensity interval exercise (MIIE) and acute moderate-intensity continue to exercise (MICE) for 40 min significantly decrease the plasma level of full-length betatrophin respectively (174.18 ± 48.19 ng/mL; 182.31 ± 52.69 ng/mL), compared to the placebo (283.97 ± 32.23 ng/mL) post 10 min and 6 h exercise treatment (p ≤ 0.05). The plasma level of betatrophin was significantly and negatively correlated with BMI (r = ? 0.412, p = 0.037), fasting blood glucose (r = ? 0.390, p = 0.049), and positively correlated with VO2max (r = 0.456, p = 0.019). In addition, the linear and ordinal logistic regression analysis shows that betatrophin, is a potential predictor for BMI [estimate value = 0.995, p = 0.037 and OR (95 % CI) = 0.992 (0.0984–1.00), p = 0,048]. In summary, our data demonstrate that the circulating levels of betatrophin were decreased after acute moderate-intensity exercise training.  相似文献   

7.
Prior exercise has the potential to enhance subsequent performance by accelerating the oxygen uptake (VO2) kinetics. The present study investigated the effects of two different intensities of prior exercise on pulmonary VO2 kinetics and exercise time during subsequent exhaustive rowing exercise. It was hypothesized that in prior heavy, but not prior moderate exercise condition, overall VO2 kinetics would be faster and the VO2 primary amplitude would be higher, leading to longer exercise time at VO2max. Six subjects (mean ± SD; age: 22.9±4.5 yr; height: 181.2±7.1 cm and body mass: 75.5±3.4 kg) completed square-wave transitions to 100% of VO2max from three different conditions: without prior exercise, with prior moderate and heavy exercise. VO2 was measured using a telemetric portable gas analyser (K4b2, Cosmed, Rome, Italy) and the data were modelled using either mono or double exponential fittings. The use of prior moderate exercise resulted in a faster VO2 pulmonary kinetics response (τ1 = 13.41±3.96 s), an improved performance in the time to exhaustion (238.8±50.2 s) and similar blood lactate concentrations ([La]) values (11.8±1.7 mmol.L−1) compared to the condition without prior exercise (16.0±5.56 s, 215.3±60.1 s and 10.7±1.2 mmol.L−1, for τ1, time sustained at VO2max and [La], respectively). Performance of prior heavy exercise, although useful in accelerating the VO2 pulmonary kinetics response during a subsequent time to exhaustion exercise (τ1 = 9.18±1.60 s), resulted in a shorter time sustained at VO2max (155.5±46.0 s), while [La] was similar (13.5±1.7 mmol.L−1) compared to the other two conditions. Although both prior moderate and heavy exercise resulted in a faster pulmonary VO2 kinetics response, only prior moderate exercise lead to improved rowing performance.  相似文献   

8.

Objective

To describe different end criteria for reaching maximal oxygen uptake (VO2max) during a continuous graded exercise test on the treadmill, and to explore the manner by which different end criteria have an impact on the magnitude of the VO2max result.

Methods

A sample of 861 individuals (390 women) aged 20–85 years performed an exercise test on a treadmill until exhaustion. Gas exchange, heart rate, blood lactate concentration and Borg Scale6–20 rating were measured, and the impact of different end criteria on VO2max was studied;VO2 leveling off, maximal heart rate (HRmax), different levels of respiratory exchange ratio (RER), and postexercise blood lactate concentration.

Results

Eight hundred and four healthy participants (93%) fulfilled the exercise test until voluntary exhaustion. There were no sex-related differences in HRmax, RER, or Borg Scale rating, whereas blood lactate concentration was 18% lower in women (P<0.001). Forty-two percent of the participants achieved a plateau in VO2; these individuals had 5% higher ventilation (P = 0.033), 4% higher RER (P<0.001), and 5% higher blood lactate concentration (P = 0.047) compared with participants who did not reach a VO2 plateau. When using RER ≥1.15 or blood lactate concentration ≥8.0 mmol•L–1, VO2max was 4% (P = 0.012) and 10% greater (P<0.001), respectively. A blood lactate concentration ≥8.0 mmol•L–1 excluded 63% of the participants in the 50–85-year-old cohort.

Conclusions

A range of typical end criteria are presented in a random sample of subjects aged 20–85 years. The choice of end criteria will have an impact on the number of the participants as well as the VO2max outcome. Suggestions for new recommendations are given.  相似文献   

9.
NO is crucial for endothelial function and vascular health. Plasma nitrite (NO2) is the main oxidation product of NO and has been shown to reflect changes in eNOS activity. We hypothesized that plasma NO2 response to physical exercise stress along with physiological endothelial function would be reduced with increasing severity of vascular disease. Subject groups were: (a) risk factors but no vascular disease (RF); (b) Type 2 diabetes with no vascular disease (DM); (c) diagnosed peripheral arterial disease (PAD); and (d) DM + PAD. Venous blood was drawn at rest and 10 min following maximal exercise. Plasma samples were analyzed by reductive chemiluminescence. Brachial diameters were imaged prior to, during and following 5 min of forearm occlusion (BAFMD). There were no differences in resting plasma NO2 or BA diameters between groups. The PAD groups had lower age adjusted BAFMD responses (p  0.05). Within group analysis revealed an increase in NO2 in the RF group (+39.3%), no change in the DM (−15.51%), and a decrease in the PAD (−44.20%) and PAD + DM (−39.95%). This was maintained after adjusting for age and VO2peak (p  0.05). ΔNO2 and BAFMD were the strongest independent predictors of VO2peak in multivariate linear regression. These findings suggest ΔNO2 discriminates severity of cardiovascular disease risk, is related to endothelial function and predicts exercise capacity.  相似文献   

10.

Background

Telomeres are potential markers of mitotic cellular age and are associated with physical ageing process. Long-term endurance training and higher aerobic exercise capacity (VO2max) are associated with improved survival, and dynamic effects of exercise are evident with ageing. However, the association of telomere length with exercise training and VO2max has so far been inconsistent. Our aim was to assess whether muscle telomere length is associated with endurance exercise training and VO2max in younger and older people.

Methods

Twenty men; 10 young (22–27 years) and 10 old (66–77 years), were studied in this cross-sectional study. Five out of 10 young adults and 5 out of 10 older were endurance athletes, while other halves were exercising at a medium level of activity. Mean telomere length was measured as telomere/single copy gene-ratio (T/S-ratio) using quantitative real time polymerase chain reaction. VO2max was measured directly running on a treadmill.

Results

Older endurance trained athletes had longer telomere length compared with older people with medium activity levels (T/S ratio 1.12±0.1 vs. 0.92±0.2, p = 0.04). Telomere length of young endurance trained athletes was not different than young non-athletes (1.47±0.2 vs. 1.33±0.1, p = 0.12). Overall, there was a positive association between T/S ratio and VO2max (r = 0.70, p = 0.001). Among endurance trained athletes, we found a strong correlation between VO2max and T/S ratio (r = 0.78, p = 0.02). However, corresponding association among non-athlete participants was relatively weak (r = 0.58, p = 0.09).

Conclusion

Our data suggest that VO2max is positively associated with telomere length, and we found that long-term endurance exercise training may provide a protective effect on muscle telomere length in older people.  相似文献   

11.
Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to investigate the influence of maximal aerobic power (˙VO 2max) on the recovery of human calf muscle from high-intensity exercise. The (˙VOO2max) of 21 males was measured during treadmill exercise and subjects were assigned to either a low-aerobic-power (LAP) group (n = 10) or a high-aerobic-power (HAP) group (n = 11). Mean (SE) ˙VO 2max of the groups were 46.6 (1.1) and 64.4 (1.4) ml · kg−1 · min−1, respectively. A calf ergometry work capacity test was used to assign the same relative exercise intensity to each subject for the MRS protocol. At least 48 h later, subjects performed the rest (4 min), exercise (2 min) and recovery (10 min) protocol in a 1.5 T MRS scanner. The relative concentration of phosphocreatine (PCr) was measured throughout the protocol and intracellular pH (pHi) was determined from the chemical shift between inorganic phospate (Pi) and PCr. End-exercise PCr levels were 27 (3.4) and 25 (3.5)% of resting levels for LAP and HAP respectively. Mean resting pHi was 7.07 for both groups, and following exercise it fell to 6.45 (0.04) for HAP and 6.38 (0.04) for LAP. Analysis of data using non-linear regression models showed no differences in the rate of either PCr or pHi recovery. The results suggest that ˙VO2max is a poor predictor of metabolic recovery rate from high-intensity exercise. Differences in recovery rate observed between individuals with similar ˙VO2max imply that other factors influence recovery. Accepted: 17 December 1996  相似文献   

12.
Aerobic fitness, measured as maximal oxygen uptake (VO2max), is a good indicator of cardiovascular health, and a strong predictor of cardiovascular mortality. Biomarkers associated with low VO2max may therefore represent potential early markers of future cardiovascular disease (CVD). The aim of this study was to assess whether circulating microRNAs (miRs) are associated with VO2max-level in healthy individuals. In a screening study, 720 miRs were measured in serum samples from healthy individuals (40–45 yrs) with high (n = 12) or low (n = 12) VO2max matched for gender, age and physical activity. Candiate miRs were validated in a second cohort of subjects with high (n = 38) or low (n = 38) VO2max. miR-210 and miR-222 were found to be higher in the low VO2max-group (p<0.05). In addition, miR-21 was increased in male participants with low VO2max (p<0.05). There were no correlations between traditional risk factors for CVD (blood pressure, cholesterol, smoking habit, or obesity) and miR-21, miR-210 and miR-222. DIANA-mirPath identified 611 potential gene-targets of miR-21, miR-210 and miR-222, and pathway analysis indicated alterations in several important signaling systems in subjects with low VO2max. Potential bias involve that blood was collected from non-fasting individuals, and that 8 performed exercise within 24 h before sampling. In conclusion, we found that miR-210, miR-21, and miR-222 were increased in healthy subjects with low VO2max. The lack of association between these three miRs, and other fitness related variables as well as traditional CVD risk factors, suggests that these miRs may have a potential as new independent biomarkers of fitness level and future CVD.  相似文献   

13.
The objective of this study was to investigate the physiological indices of competitive routines in women''s artistic gymnastics by characterizing post-exercise heart rate (HR), oxygen uptake (VO2) and peak blood lactate concentration (Lmax) in a group of eight young elite-oriented female gymnasts. HR was continuously monitored with Polar RS400 monitors during the test event simulating a competition environment. Within 5 s of the end of each routine, the breath-by-breath gas analyser mask was placed on the face to record VO2. VO2max was calculated by the backward extrapolation method of the VO2 recovery curve. Lmax was obtained during recovery (min 1, 3, 5, 7 and 10) subsequent to each event. One week later, HR, VO2 and Lmax were measured during an incremental continuous treadmill test. The treadmill test was confirmed as the assessment with the highest physiological demand. The gymnasts reached their highest values of HR (183-199 beats · min-1), VO2/Bm (33-44 ml · kg-1 · min-1) and Lmax (7-9 mmol · l-1) in the floor and uneven bars exercises. The vault was the event with the lowest HR (154-166 beats · min-1) and Lmax (2.4-2.6 mmol · l-1), and the balance beam had the lowest VO2 (27-35 ml · kg-1 · min-1). The mean relative peak intensities attained in the different events, which ranged from 65 to 85% of the individual VO2max and HRmax recorded in the laboratory, suggest that cardiorespiratory and metabolic demands are higher than previously indicated. The high percentage of VO2 measured, particularly after the floor event, suggests that aerobic power training should not be neglected in women''s artistic gymnastics.  相似文献   

14.
15.
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.  相似文献   

16.
Summary The capacity for sustained, terrestrial locomotion in the cockroach. Blaberus discoidalis, was determined in relation to running speed, metabolic cost, aerobic capacity, and ambient temperature (T a=15, 23, and 34°C; acclimation temperature=24°C). Steady-state thoracic temperature (T tss) increased linearly with speed at each T a.The difference between T tss and T awas similar at each experimental temperature with a maximum increase of 7°C. Steady-state oxygen consumption (VO2ss) increased linearly with speed at each T aand had a low thermal dependence (Q10=1.0-1.4). The minimum cost of locomotion (the slope of the VO2ss versus speed function) was independent of T a.Cockroaches attained a maximal oxygen consumption (VO2max). increased with T afrom 2.1 ml O2·g-1·h-1 at 15°C to 4.9 ml O2·g-1·h-1 at 23°C, but showed no further increase at 34°C, VO2max increased 23-fold over resting VO2 at 23°C, 10-fold at 34°C, and 15-fold at 15°C. Endurance correlated with the speed at which VO2max was attained (MAS, maximal aerobic speed). Temperature affected the kinematics of locomotion. compared to cockroaches running at the same speed, but higher temperatures (23–34°C), low temperature (15°C) increased protraction time, reduced stride frequency, and reduced stability by increasing body pitching. The thermal independence of the minimum cost of locomotion (Cmin), the low thermal dependence of VO2ss (i.e., y-intercept of the VO2ss versus speed function), and a typical Q10 of 2.0 for VO2max combined to increase MAS and endurance in B. discoidalis when T awas increased from 15 to 23°C. Exerciserelated endothermy enabled running cockroaches to attain a greater VO2max, metabolic scope, and endurance capacity at 23°C than would be possible if T tss remained equal to T a. The MAS of B. discoidalis was similar to that of other arthropods that use trachea, but was 2-fold greater than ectotherms, such as salamanders, frogs, and crabs of a comparable body mass.Abbreviations T a ambient temperature - T t thoracic temperature - T tss steady state thoracic temperature during exercise - T trest thoracic temperature during rest - VO2 oxygen consumption - VO2rest oxygen consumption during rest - VO2ss steady-state oxygen consumption during exercise - VO2max maximal oxygen consumption; MAS maximum aerobic speed - C min minimum cost of locomotion - t end endurance time  相似文献   

17.
Tadaishi M  Miura S  Kai Y  Kano Y  Oishi Y  Ezaki O 《PloS one》2011,6(12):e28290

Background

Maximal oxygen uptake (VO2max) predicts mortality and is associated with endurance performance. Trained subjects have a high VO2max due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO2max. There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO2max and exercise capacity.

Methodology/Principal Findings

Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.

Conclusions/Significance

Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.  相似文献   

18.
19.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.  相似文献   

20.
Energy costs and energy sources in karate (wado style) were studied in eight male practitioners (age 23.8 years, mass. 72.3 kg, maximal oxygen consumption (VO2max) 36.8 ml · min–1 · kg–1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approximately 80 s). Oxygen consumption (VO2) was determined during pre-exercise rest, the exercise period and the first 270 s of recovery in five consecutive expired gas collections. A blood sample for lactate (la) analysis was taken 5 min after the end of exercise. The overall amount of O2 consumed during the exercise and in the following recovery increased linearly with the duration of exercise (t) from approximately 1.51 (for t equal to 10.5 s (SD 1.6)) to approximately 5.81, for t equal to 81.5 s (SD 1.0). The energy release from la production (VO21a ) calculated assuming that an increase of 1 mmol · l–1 la corresponded to a VO2 of 3 mlO2 · kg–1 was negligible for t equal to or less than 20 s and increased to 17.3 ml · kg–1 (la = 5.8 mmol · l–1 above resting values) for t equal approximately to 80 s. The overall energy requirement (VO2eq) as given by the sum of VO2 and VO2la was described by VO2eq = 0.87 + 0.071 · t (n = 64; r 2 = 0.91), where VO2eq is in litres and t in seconds. This equation shows that the metabolic power (VO2eq · t –1) for this karate style is very high: from approximately 9.51 · min–1 for t equal to 10 s to approximately 4.91 · min–1 for t equal to 80 s, i.e. from 3.5 to 1.8 times the subjects' VO2max. The fraction of VO2eq derived from the amount of O2 consumed during the exercise increased from 11% for t equal to 10 s to 41 % for t equal to 80 s whereas VO21a was negligible far t equal to or less than 20 s and increased to 13 % o for t equal to 80 s. The remaining fraction (from 90% for t equal to 10 s to 46% for t equal to 80 s), corresponding to the amount of O2 consumed in the recovery after exercise, is derived from anaerobic alactic sources, i.e. from net splitting of high energy phosphates during the exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号