首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permissive and restrictive phenotypes of two secretory mutants of Saccharomyces cerevisiae, sec 1 and sec 18, were studied by freeze-fracture technique. The sec 1 mutant, in addition to accumulating secretory vesicles, was characterized by a disappearance of the plasma membrane invaginations and by an aggregation of intra-membrane particles in vacuolar membranes. A prolonged incubation of the cells at 37 degrees C led to pathological fusion of some vesicles with the plasma membrane. After the cells were transferred back to the permissive temperature the invaginations reappeared rapidly while the accumulated vesicles disappeared only after budding had been resumed. The sec 18 mutant, apart from having distended endoplasmic reticulum membranes, also lost the plasma membrane invaginations at 37 degrees C and regained them at 24 degrees C. The described ultrastructural changes are typical for the restrictive phenotypes and represent further manifestations of the pleiotropic effect of the respective sec mutations.  相似文献   

2.
Isolation of secretory vesicles from Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Purification of secretory vesicles from Saccharomyces cerevisiae has been hindered because these organelles normally represent a small proportion of cellular membranes. In the yeast secretory mutant sec1, secretory vesicles accumulate intracellularly in large quantities. Using a sec1 strain we have devised a procedure for the partial purification of these vesicles. The purification employs differential and density gradient centrifugations and an electrophoretic separation of membranes. The fractions obtained from this procedure are enriched for secretory vesicles at least fivefold over other cellular membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane fractions reveals a distinct set of polypeptides associated with secretory vesicles.  相似文献   

3.
Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae.   总被引:12,自引:0,他引:12  
Yeast secretory (sec) mutants that are blocked in the transport of secretory proteins and accumulate membrane organelles were used to study the biosynthesis of fatty acid-acylated proteins. Four proteins were labeled with [3H]palmitate in sec mutants accumulating endoplasmic reticulum membranes. Three of these (molecular weights approximately equal to 20,000, 50,000, and 120,000) were N-linked glycoproteins, based on their ability to be labeled with [3H]mannose and their sensitivity to endoglycosidase H. The fourth protein (molecular weight approximately equal to 30,000) also was labeled with [3H]mannose but was insensitive to endoglycosidase H; it appeared to contain O-linked sugars. In sec mutants accumulating Golgi membranes or post-Golgi vesicles, a 35-kilodalton protein was labeled with [3H]palmitate. Analysis of Staphylococcus aureus protease V8 digests and pulse-chase experiments indicated that the 30-kilodalton protein was a precursor of 35 kilodaltons. None of these proteins was labeled with [3H]palmitate in a sec mutant that blocked the penetration of nascent polypeptides into endoplasmic reticulum; thus, acylation occurred in endoplasmic reticulum. All four proteins could be recovered from fractions enriched for yeast membranes. Fatty acids were not released from proteins by boiling in sodium dodecyl sulfate or extraction with organic solvents but were recovered as methyl esters after proteins were treated with KOH-methanol, a reaction characteristic of an acyl ester linkage.  相似文献   

4.
Cells of a Saccharomyces cerevisiae mutant that is temperature-sensitive for secretion and cell surface growth become dense during incubation at the non-permissive temperature (37°C). This property allows the selection of additional secretory mutants by sedimentation of mutagenized cells on a Ludox density gradient. Colonies derived from dense cells are screened for conditional growth and secretion of invertase and acid phosphatase. The sec mutant strains that accumulate an abnormally large intracellular pool of invertase at 37°C (188 mutant clones) fall into 23 complementation groups, and the distribution of mutant alleles suggests that more complementation groups could be found. Bud emergence and incorporation of a plasma membrane sulfate permease activity stop quickly after a shift to 37°C. Many of the mutants are thermoreversible; upon return to the permissive temperature (25°C) the accumulated invertase is secreted. Electron microscopy of sec mutant cells reveals, with one exception, the temperature-dependent accumulation of membrane-enclosed secretory organelles. We suggest that these structures represent intermediates in a pathway in which secretion and plasma membrane assembly are colinear.  相似文献   

5.
Secretory vesicles that accumulate in the temperature-sensitive sec6-4 strain of yeast have been shown to contain a vanadate-sensitive ATPase, presumably en route to the plasma membrane (Walworth, N. C., and Novick, P. J. (1987) J. Cell Biol. 105, 163-174). We have now established this enzyme to be a fully functional form of the PMA1 [H+]ATPase, identical in its catalytic properties to that found in the plasma membrane. In addition, the secretory vesicles are sealed tightly enough to permit the measurement of ATP-dependent proton pumping with fluorescent probes. We have gone on to exploit the vesicles as an expression system for site-directed mutants of the ATPase. For this purpose, a sec6-4 strain has been constructed in which the chromosomal PMA1 gene is under control of the GAL1 promoter; the mutant pma1 allele to be studied is introduced on a centromeric plasmid under the control of a novel heat shock promoter. In galactose medium at 23 degrees C, the wild-type ATPase is produced and supports normal vegetative growth. When the cells are switched to glucose medium at 37 degrees C, however, the wild-type gene turns off, the mutant gene turns on, and secretory vesicles accumulate. The vesicles contain a substantial amount of newly synthesized, plasmid-encoded ATPase (5-10% of total vesicle protein), but only traces of residual wild-type PMA1 ATPase and no detectable mitochondrial ATPase, vacuolar ATPase, or acid or alkaline phosphatase. To test the expression strategy, we have made use of pma1-105 (Ser368----Phe), a vanadate-resistant mutant previously characterized by standard methods (Perlin, D. S., Harris, S. L., Seto-Young, D., and Haber, J. E. (1989) J. Biol. Chem. 264, 21857-21864). In secretory vesicles, as expected, the plasmid-borne pma1-105 allele gives rise to a mutant enzyme with a reduced rate of ATP hydrolysis and a 100-fold increase in Ki for vanadate. Proton pumping is similarly resistant to vanadate. Thus, the vesicles appear well suited for the production and characterization of mutant forms of the PMA1 [H+]ATPase. They should also aid the study of other yeast membrane proteins that are essential for growth as well as heterologous proteins whose appearance in the plasma membrane may be toxic to the cell.  相似文献   

6.
Yeast cells secrete a variety of glycosylated proteins. At least two of these proteins, invertase and acid phosphatase, fail to be secreted in a new class of mutants that are temperature-sensitive for growth. Unlike the yeast secretory mutants previously described (class A sec mutants; Novick, P., C. Field, and R. Schekman, 1980, Cell., 21:205-420), class B sec mutants (sec 53, sec 59) fail to produce active secretory enzymes at the restrictive temperature (37 degrees C). sec 53 and sec 59 appear to be defective in reactions associated with the endoplasmic reticulum. Although protein synthesis continues at a nearly normal rate for 2 h at 37 degrees C, incorporation of [3H]mannose into glycoprotein is reduced. Immunoreactive polypeptide forms of invertase accumulate within the cell which have mobilities on SDS PAGE consistent with incomplete glycosylation: sec 53 produces little or no glycosylated invertase, and sec 59 accumulates forms containing 0-3 of the 9-10 N-linked oligosaccharide chains that are normally added to the protein. In addition to secreted enzymes, maturation of the vacuolar glycoprotein carboxypeptidase Y, incorporation of the plasma membrane sulfate permease activity, and secretion of the major cell wall proteins are blocked at 37 degrees C.  相似文献   

7.
Immunoelectron microscopy of Saccharomyces cerevisiae cells embedded in Lowicryl K4M has been used to localize invertase and plasma membrane (PM) ATPase in secretory organelles. sec mutant cells incubated at 37 degrees C were prepared for electron microscopy, and thin sections were incubated with polyclonal antibodies, followed by decoration with protein A-gold. Specific labeling of invertase was seen in the lumen of the endoplasmic reticulum, Golgi apparatus, and secretory vesicles in mutant cells that exaggerate these organelles. PM ATPase accumulated within the same organelles. Double-immune labeling revealed that invertase and PM ATPase colocalized in secretory vesicles. These results strengthen the view that secretion and plasma membrane assembly are biosynthetically coupled in yeast.  相似文献   

8.
Temperature-sensitive secretory mutants (sec) of S. cerevisiae have been used to evaluate the organelles and cellular functions involved in transport of the vacuolar glycoprotein, carboxypeptidase Y (CPY). Others have shown that CPY (61 kd) is synthesized as an inactive proenzyme (69 kd) that is matured by cleavage of an 8 kd amino-terminal propeptide. sec mutants that are blocked in either of two early stages in the secretory process and accumulate endoplasmic reticulum or Golgi bodies also accumulate precursor forms of CPY when cells are incubated at the nonpermissive temperature (37°C). These forms are converted to a proper size when cells are returned to a permissive temperature (25°C). Vacuoles isolated from sec mutant cells do not contain the proCPY produced at 37°C. These results suggest that vacuolar and secretory glycoproteins require the same cellular functions for transport from the endoplasmic reticulum and from the Golgi body. The Golgi body represents a branch point in the pathway: from this organelle, vacuolar proenzymes are transported to the vacuole for proteolytic processing and secretory proteins are packaged into vesicles.  相似文献   

9.
《The Journal of cell biology》1995,128(6):1055-1068
Previous studies have shown that temperature-sensitive, myo2-66 yeast arrest as large, unbudded cells that accumulate vesicles within their cytoplasm (Johnston, G. C., J. A. Prendergast, and R. A. Singer. 1991. J. Cell Biol. 113:539-551). In this study we show that myo2-66 is synthetically lethal in combination with a subset of the late-acting sec mutations. Thin section electron microscopy shows that the post- Golgi blocked secretory mutants, sec1-1 and sec6-4, rapidly accumulate vesicles in the bud, upon brief incubations at the restrictive temperature. In contrast, myo2-66 cells accumulate vesicles predominantly in the mother cell. Double mutant analysis also places Myo2 function in a post-Golgi stage of the secretory pathway. Despite the accumulation of vesicles in myo2-66 cells, pulse-chase studies show that the transit times of several secreted proteins, including invertase and alpha factor, as well as the vacuolar proteins, carboxy- peptidase Y and alkaline phosphatase, are normal. Therefore the vesicles which accumulate in this mutant may function on an exocytic pathway that transports a set of cargo proteins that is distinct from those analyzed. Our observations are consistent with a role for Myo2 in transporting a class of secretory vesicles from the mother cell along actin cables into the bud.  相似文献   

10.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

11.
B Goud  A Salminen  N C Walworth  P J Novick 《Cell》1988,53(5):753-768
SEC4, one of the 10 genes involved in the final stage of the yeast secretory pathway, encodes a ras-like, GTP-binding protein. In wild-type cells, Sec4 protein is located on the cytoplasmic face of both the plasma membrane and the secretory vesicles in transit to the cell surface. In all post-Golgi blocked sec mutants, Sec4p is predominantly associated with the secretory vesicles that accumulate as a result of the secretory block. Sec4p is synthesized as a soluble protein that rapidly (t1/2 less than or equal to 1 min) and tightly associates with secretory vesicles and the plasma membrane by virtue of a conformational change of a covalent modification. These data suggest that Sec4p may function as a "G" protein on the vesicle surface to transduce an intracellular signal needed to regulate transport between the Golgi apparatus and the plasma membrane.  相似文献   

12.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

13.
Parallel secretory pathways to the cell surface in yeast   总被引:21,自引:7,他引:14       下载免费PDF全文
Saccharomyces cerevisiae mutants that have a post-Golgi block in the exocytic pathway accumulate 100-nm vesicles carrying secretory enzymes as well as plasma membrane and cell-wall components. We have separated the vesicle markers into two groups by equilibrium isodensity centrifugation. The major population of vesicles contains Bg12p, an endoglucanase destined to be a cell-wall component, as well as Pma1p, the major plasma membrane ATPase. In addition, Snc1p, a synaptobrevin homologue, copurifies with these vesicles. Another vesicle population contains the periplasmic enzymes invertase and acid phosphatase. Both vesicle populations also contain exoglucanase activity; the major exoglucanase normally secreted from the cell, encoded by EXG1, is carried in the population containing periplasmic enzymes. Electron microscopy shows that both vesicle groups have an average diameter of 100 nm. The late secretory mutants sec1, sec4, and sec6 accumulate both vesicle populations, while neither is detected in wild-type cells, early sec mutants, or a sec13 sec6 double mutant. Moreover, a block in endocytosis does not prevent the accumulation of either vesicle species in an end4 sec6 double mutant, further indicating that both populations are of exocytic origin. The accumulation of two populations of late secretory vesicles indicates the existence of two parallel routes from the Golgi to the plasma membrane.  相似文献   

14.
New thermosensitive mutants of the yeast Saccharomyces cerevisiae which block the secretion of periplasmic enzymes at restriction temperature have been obtained. These mutants accumulate active low molecular weight and mature invertase species in the cell; the buoyant density of the cells in a Percoll gradient is higher than that in the wild strain cells. The mutant cells transferred to permissive temperature (25 degrees C) in the absence of protein synthesis can secrete some amount of accumulated invertase. It was found that the secretory defects of conditional mutants do not affect the activity of cytoplasmic enzymes (e.g., alcohol dehydrogenase) or the level of total protein synthesis and glycosylation and do not induce non-specific disturbances in energy metabolism and plasma membrane functions at restriction temperature. Some strains of new secretory mutants revealed uncoupled defective secretion of periplasmic enzymes and intrinsic membrane proteins (proline permease). The possibility of branching of the secretory pathway for periplasmic enzymes and cytoplasmic membrane proteins is discussed.  相似文献   

15.
Secretory vesicles are neutrophil intracellular storage granules formed by endocytosis. Understanding the functional consequences of secretory vesicle exocytosis requires knowledge of their membrane proteins. The current study was designed to use proteomic technologies to develop a more complete catalog of secretory vesicle membrane proteins and to compare the proteomes of secretory vesicle and plasma membranes. A total of 1118 proteins were identified, 573 (51%) were present only in plasma membrane-enriched fractions, 418 (37%) only in secretory vesicle-enriched membrane fractions, and 127 (11%) in both fractions. Gene Ontology categorized 373 of these proteins as integral membrane proteins. Proteins typically associated with other intracellular organelles, including nuclei, mitochondria, and ribosomes, were identified in both membrane fractions. Ingenuity Pathway Knowledge Base analysis determined that the majority of canonical and functional pathways were significantly associated with proteins from both plasma membrane-enriched and secretory vesicle-enriched fractions. There were, however, some canonical signaling pathways that involved proteins only from plasma membranes or secretory vesicles. In conclusion, a number of proteins were identified that may elucidate mechanisms and functional consequences of secretory vesicle exocytosis. The small number of common proteins suggests that the hypothesis that secretory vesicles are formed from plasma membranes by endocytosis requires more critical evaluation.  相似文献   

16.
In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the permeases from the ER to the Golgi in vitro. Addition of soluble COPII components (Sec23/24p, Sec13/31p, and Sar1p) to yeast membrane preparations generated vesicles containing the general amino acid permease. Gap1p, and the histidine permease, Hip1p. Shr3p was required for the packaging of Gap1p and Hip1p but was not itself incorporated into transport vesicles. In contrast, the packaging of the plasma membrane ATPase, Pma1p, and the soluble yeast pheromone precursor, glycosylated pro alpha factor, was independent of Shr3p. In addition, we show that integral membrane and soluble cargo colocalize in transport vesicles, indicating that different types of cargo are not segregated at an early step in secretion. Our data suggest that specific ancillary proteins in the ER membrane recruit subsets of integral membrane protein cargo into COPII transport vesicles.  相似文献   

17.
Detergent-resistant membrane (DRM) fractions enriched in ergosterol and sphingolipids can be isolated from yeast cells and have been proposed to represent the biochemical equivalents of lipid rafts. Most yeast plasma membrane proteins studied for their detergent solubility have been found in DRMs, except for the Hxt1 and Gap1 permeases. We here compared Gap1 detergent solubility in wild-type and various mutant cells under conditions promoting cell surface accumulation or ubiquitin-dependent down-regulation of the permease. We show that Gap1 present at the plasma membrane is associated with DRMs. This association occurs at the Golgi level. In the absence of sphingolipid neosynthesis, Gap1 fails to accumulate at the plasma membrane and is missorted to the vacuolar lumen. Furthermore, the presence of Gap1 at the plasma membrane correlates perfectly with its association with DRMs, whatever the activity or ubiquitination state of the permease and regardless of whether it has reached the cell surface via normal secretion, after recycling, or upon missorting to the vacuole before rerouting to the plasma membrane. Finally, we show that Hxt1 present at the cell surface is also associated with DRMs. We discuss a model where yeast plasma membrane proteins are systematically associated with sphingolipid/ergosterol-enriched microdomains when located at the cell surface.  相似文献   

18.
Sec2p is required for the polarized transport of secretory vesicles in S. cerevisiae. The Sec2p NH(2) terminus encodes an exchange factor for the Rab protein Sec4p. Sec2p associates with vesicles and in Sec2p COOH-terminal mutants Sec4p and vesicles no longer accumulate at bud tips. Thus, the Sec2p COOH terminus functions in targeting vesicles, however, the mechanism of function is unknown. We found comparable exchange activity for truncated and full-length Sec2 proteins, implying that the COOH terminus does not alter the exchange rate. Full-length Sec2-GFP, similar to Sec4p, concentrates at bud tips. A COOH-terminal 58-amino acid domain is necessary but not sufficient for localization. Sec2p localization depends on actin, Myo2p and Sec1p, Sec6p, and Sec9p function. Full-length, but not COOH-terminally truncated Sec2 proteins are enriched on membranes. Membrane association of full-length Sec2p is reduced in sec6-4 and sec9-4 backgrounds at 37 degrees C but unaffected at 25 degrees C. Taken together, these data correlate loss of localization of Sec2 proteins with reduced membrane association. In addition, Sec2p membrane attachment is substantially Sec4p independent, supporting the notion that Sec2p interacts with membranes via an unidentified Sec2p receptor, which would increase the accessibility of Sec2p exchange activity for Sec4p.  相似文献   

19.
A novel compositional overlap between membranes of exocrine and endocrine granules, synaptic vesicles, and a liver Golgi fraction has been identified using a monoclonal antibody (SG7C12) raised against parotid secretion granule membranes. This antibody binds secretory carrier membrane proteins with apparent Mr 31,000, 33,000 and 35,000 (designated SCAMPs 31, 33, 35). The proteins are nonglycosylated integral membrane components, and the epitope recognized by SG7C12 is on the cytoplasmic side of the granule membrane. SCAMP 33 is found in all secretory carrier membranes studied so far while SCAMP 35 is found in exocrine and certain endocrine granules and liver Golgi membranes and SCAMP31 only in exocrine granules. They are not related to other similar-sized proteins that have been studied previously in relation to vesicular transport and secretion. Immunocytochemical staining shows that these SCAMPs are highly concentrated in the apical cytoplasm of exocrine cells. Antigens are present not only on exocrine granules and synaptic vesicles but also on other smooth membrane vesicles of exocrine and neural origin as revealed by immunolocalization in subcellular fractions and immunoadsorption to antibody-coated magnetic beads. The wide tissue distribution and localization to secretory carriers and related membranes suggest that SCAMPs 31-35 may be essential components in vesicle-mediated transport/secretion.  相似文献   

20.
We have characterized the structure, biogenesis, and localization of dipeptidyl aminopeptidase B (DPAP B), a membrane protein of the yeast vacuole. An antibody specific for DPAP B recognizes a 120-kD glycoprotein in yeast that behaves like an integral membrane protein in that it is not removed from membranes by high pH Na2CO3 treatment. Inspection of the deduced amino acid sequence of DPAP B reveals a hydrophobic domain near the NH2 terminus that could potentially span a lipid bilayer. The in vitro enzymatic activity and apparent molecular weight of DPAP B are unaffected by the allelic state of PEP4, a gene essential for the proteolytic activation of a number of soluble vacuolar hydrolases. DPAP B is synthesized as a glycosylated precursor that is converted to the mature 120-kD species by carbohydrate addition. The precursor form of DPAP B accumulates in sec mutants (Novick, P., C. Field, and R. Schekman. 1980. Cell. 21:205-215) that are blocked at the ER (sec18) or Golgi apparatus (sec7), but not at secretory vesicles (sec1). Immunolocalization of DPAP B in wild-type or sec1 mutant cells shows that the protein resides in the vacuolar membrane. However, it is present in non-vacuolar compartments in sec18 and sec7 cells, confirming that the delivery of DPAP B is blocked in these mutants. Interestingly, DPAP B appears to stain the nuclear envelope in a sec18 mutant, which is consistent with the accumulation of DPAP B in the ER membrane at the restrictive temperature. These results suggest that soluble and membrane-bound vacuolar proteins use the same stages of the secretory pathway for their transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号