首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most bio-industrial mammalian cells are cultured in serum-free media to achieve advantages, such as batch consistency, suspended growth, and simplified purification. The successful development of a serum-free medium could contribute to a reduction in the experimental variation, enhance cell productivity, and facilitate biopharmaceuticals production using the cell culture process. Commercial serum-free media are also becoming more and more popular. However, the cell line secrets its own recombinant product and has special nutritional requirements. How can the composition of the proprietary medium be adjusted to support the specific cell’s metabolism and recombinant protein? This article uses statistical strategies to modify the commercial medium. A design of experiments is adopted to optimize the medium composition for the hybridoma cell in a serum-free condition. The supplements of peptone, ferric citrate, and trace elements were chosen to study their impact on hybridoma growth and antibody production using the response surface methodology. The stimulatory effect of the developed formulation on hybridoma growth was confirmed by the steepest ascent path. The optimal medium stimulated the hybridoma growth and antibody production in three diverse systems: a static plate, an agitated spinner flask, and a hollow fiber reactor. The cells in the developed serum-free medium had a better antibody production as compared to that in the commercial medium in the hollow fiber reactor. Our results demonstrated that the facile optimization for medium and antibody production was successfully accomplished in the hybridoma cells.  相似文献   

2.
Traditionally, cell culturists have relied upon the addition of serum to culture medium for the growth and maintenance of cell lines. However, many aspects of the use of serum in tissue culture are problematic. Cell culture supplements that circumvent the need for serum are readily available and provide a consistent protein composition. This defined environment allows the antibody to be more easily purified from culture supernatants. Nutridoma media supplements were formulated to support the growth of lymphoblastoid cells in a defined culture environment. In this study, Nutridoma media supplements were tested in parallel with serum-containing cultures to determine if Nutridoma supplemented medium is effective in supporting hybridoma cell growth and antibody production in three hybridoma cell lines. Data, based on cell growth and antibody production, show the importance of basal media selection when serum is replaced with Nutridoma media supplements. SDS-PAGE results show that cell supernatants from Nutridoma supplemented cultures contain very few contaminating proteins.  相似文献   

3.
Several clones of nonproducing cells were isolated from a continuous culture of hybridoma cells, which were originally producing antibody. Their behavior was compared to that of the producing cells in batch culture. The growth kinetics of five out of six clones exhibited higher specific growth rate, higher yield of cell mass on glutamine, and lower yields of lactate and ammonium. The implications of the comparisons for growth of hybridoma cultures are discussed.  相似文献   

4.
小鼠杂交瘤单克隆抗体来源稳定、后期易制备、产量高,是免疫学中使用最为普遍的抗体。传统的耗时费力的杂交瘤制备技术无法满足日益增长的市场需求。文中从抗原设计筛选、B细胞富集与筛选、骨髓瘤细胞的改造、融合技术的改进、阳性杂交瘤细胞筛选及单克隆抗体性能快速测定中所涉及的快速制备技术方面进行阐述,以期为系统化的小鼠杂交瘤单克隆抗体的快速制备方法提供参考。  相似文献   

5.
Summary Effects of growth factors such as EGF, FGF and IL-2 on cell proliferation and monoclonal antibody production in a hybridoma cell line adapted to a completely defined serum-free medium were determined in batch cultures. The results indicate that the presence of growth factors in the medium enhances the antibody secretion without significantly affecting the growth rate. The specific antibody secretion rate of cells grown in serum-free medium supplemented with growth factors was 35% higher than those grown in serum-free medium alone.  相似文献   

6.
Effect of temperature on hybridoma cell cycle and MAb production   总被引:3,自引:0,他引:3  
The kinetics of growth and antibody formation of an anti-interleukin-2 producing hybridoma line were studied in suspension culture at temperatures ranging from 34 degrees C to 39 degrees C. Flow cytometry was used to determine the effect of temperature on the cell cycle. Maximum cell density and monoclonal antibody yield were observed at 37 degrees C. The specific monoclonal antibody production rate was approximately constant throughout each batch experiment. Lower temperatures caused cells to stay longer in the G(1)-phase of the cell cycle, but temperature had only a marginal effect on the specific antibody production rate. Arresting of cells in the G(1)-phase by means of temperature was, therefore, not suited for enhanced monoclonal antibody production. Rather, antibody production for this hybridoma was directly linked to viable cell concentration. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
The cell growth and monoclonal antibody production kinetics of hybridoma cell cultures continuously exposed to growth factors and the cognate antigen were investigated. The growth factors were the epidermal growth factor, fibroblast growth factor, and interleukin-2, whereas the antigen was the trinitrophenyl group conjugated to a carrier protein. The cultures were carried out in a protein-free medium in batch operation. During the entire cultivation period there was continuously available free, antibody-unbound antigen to interact with the cells. The produced antibody was measured with an ELISA after it was released from the antigen-protein conjugate by competitive elution with non-protein-conjugated antigen. Cultures with growth factors and without antigen increased the total antibody produced by up to 30%, whereas cell growth remained unaffacted. Soluble antigen-protein conjugates had no effect on the hybridoma cultures. In contrast, immobilized antigen-protein on sepharose beads in cultures with growth factors induced significant changes. Total antibody produced was higher by up to 40%. More importantly, the specific antibody production shifted from a growth-phase-independent to a growth-phase-dependent profile, with approximately twice as much specific antibody production during the late growth-early stationary phase relative to constant specific antibody production in the antigen-free, factor-free culture. The culture changes induced by the presence of immobilized antigen and growth factors were reversed when the antigen and the growth factors were removed from the cells' environment. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 357-364, 1997.  相似文献   

8.
A chemically defined, protein-free, and animal-component-free medium, designated RITM01, has been developed for NS0 myeloma cells. The basal medium used was a commercial serum-free and protein-free hybridoma medium, which was supplemented with phosphatidylcholine, cholesterol, beta-cyclodextrin, and ferric citrate. Increasing the amino acid concentration significantly improved cell growth. An NS0 cell line, constitutively producing a human IgG1 antibody, reached a peak cell density of 3 x 10(6) cells mL(-1) in this medium. The antibody yield was 195 mg L(-1) in batch culture, which is a 3-fold increase compared to that of a standard serum-supplemented medium, even though the cell yield was the same. The increase in antibody yield was a consequence of a longer growth phase and a slight increase in specific antibody production rate at low specific proliferation rates. Adaptation of the NS0 myeloma cell line to the protein-free conditions required about 3 weeks before viability and cell densities were stabilized. Most probably, changes in gene expression and phenotypic behavior necessary for cell survival and proliferation occurred. We hypothesize that mitogenic factors produced by the cells themselves are involved in autocrine control of proliferation. To investigate the presence of such factors, the effect of conditioned (spent) medium (CM) on cell growth and proliferation was studied. Ten-fold concentrated CM, harvested at a cell density of 2 x 10(6) cells mL(-1), had a clear positive effect on proliferation even if supplied at only 2.5% (v/v). CM was found to contain significant amounts of extracellular proteins other than the antibody. Fractionation of CM on a gel filtration column and subsequent supplementation of new NS0 cultures with the individual fractions showed that factors eluting at 20-25 kDa decreased the lag phase and increased the peak cell density as compared to control cultures. Identification of autocrine factors involved in regulation of proliferation may lead to completely new strategies for control of growth and product formation in animal cell processes.  相似文献   

9.
Fong W  Zhang Y  Yung P 《Cytotechnology》1997,24(1):47-54
To increase the yield of monoclonal antibody in a hybridoma culture, it is important to optimize the combination of several factors including cell density, antibody productivity per cell, and the duration of the culture. Potassium acetate enhances the production of antibodies by cells but sometimes depresses cell density. The production of anti-(human B-type red blood cell surface antigen) antibody by Cp9B hybridoma was studied. In batch cultures, potassium acetate inhibited Cp9B cells growth and decreased the maximal cell density but the productivity of antibody per cell was increased. The balance of the two effects resulted in a slight decline of antibody production. In a stirred tank bioreactor, the inhibitory effect of potassium acetate on cell density was overcome by applying the perfusion technique with the attachment of a cell-recycling apparatus to the bioreactor. In such a reactor, potassium acetate at 1 g l-1 did not cause a decrease in the cell density, and the antibody concentration in the culture supernatant was increased from 28 μg ml-1 to 38 μg ml-1. Potassium acetate also suppressed the consumption of glucose and the accumulation of lactate in batch cultures, but the glucose and lactate levels were kept stable by applying the perfusion technique in the stirred tank bioreactor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The application of simple growth and non-growth associated concepts from microbial systems describing substrate uptake and production formation is considered unlikely to assist in the understanding of antibody formation and, hence, in maximising antibody yield. Such concepts have many significant limitations — notably, their strict application only to products of catabolic pathways and their inability to include metabolisms which either have multiple catabolic pathways (eg, fermentation and respiration in yeast and animal cells) or in which the major product of interest is predominantly anabolic in nature (eg. amino acid production in bacteria and antibody formation in animal cells). In addition, products which undergo an assembly and secretion process or a secretion process which allows intracellular pools of product to exist are also not well described by such simple relationships. In this work, inadequacies in the current approach to the study of the kinetics of growth of hybridoma cells and antibody production are described and the examples of growth ofSaccharomyces cerevisiae andCandida utilis, amino acid production by bacteria and antibody production by animal cells are used to illustrate these limitations. Having identified these limitations, suggestions are made as to how studies might be undertaken to assist our future understanding of the process of antibody manufacture and, subsequently, maximizing antibody yield. The process of characterising the metabolism of anabolic products is subject to detailed computer simulation of the pathways involved. It is argued that such approaches will assist us in understanding more fully the nature of biosynthetic products and how they integrate with the major energy producing pathways of the cell and the cell cycle. This will assist in maximising the yield of such products.  相似文献   

11.
Hybridoma cell lines can be adapted to grow in a totally protein-free tissue culture medium and cultured in spinner flasks to generate moderate-to-high quantities of monoclonal antibodies. Such antibodies are easily purified by ammonium sulfate precipitation. This system was shown to be useful for growth of 23 different hybridoma cell lines from different sources to yield an average of 40 mg of highly purified antibody per liter of tissue culture medium.  相似文献   

12.
Mouse-mouse hybridoma cells were immobilized in polyacrylate-alginate gels. The immobilized hybridoma cells were cultured semi-continuously using a fluidized bed reactor, and allowed continuous antibody production without any gel destruction for one month. It has been proved that the polyacrylate-alginate gels were tolerant against physical stress. The composition of the gels suitable for cell growth and antibody production was given as follows; viscosity of alginate at 1% solution: 60–100 cP, alginate concentration: 0.8%, and polyacrylate concentration: 0.2%. In the semi-continuous culture using gels prepared under suitable conditions, the viable cell number was estimated as 2.5×107 cells/ml-gel, and the antibody production rate was 2.2 mg/ml-gel/d, at maximum.  相似文献   

13.
We have studied the effect of the pyruvate dehydrogenase (PDH) activator, dichloroacetate (DCA), on the growth, metabolism, and productivity of the PQXB (1/2) hybridoma cell line. In control batch cultures, cessation of growth and the onset of decline phase coincided with the time at which the media became exhausted of glutamine. Supplementation of the media with DCA (1 mM) extended the growth phase of this cell line by approximately 20 h without affecting its growth rate. This prolonged period of growth resulted in an increased maximum cell density (16%) and final antibody yield (55%). Repeat experiments showed these effects to be reproducible, with the increases in antibody yield being between 50 and 60%. DCA did not affect the specific rates of glucose utilization and lactate production. However, it decreased the specific glutamine consumption rate. This characteristic of DCA action appeared, at least in part, to provide an explanation for the extended growth phase exhibited by DCA-treated cultures, since it delayed the time at which the media became depleted of glutamine. The consumption and production kinetics for various nutrients and their metabolites in both control and DCA-treated cultures suggested that: (1) glutamine catabolism proceeded by a pathway involving conversion to glutamate by glutaminase followed by subsequent transamination by alanine aminotransferase, and (2) DCA decreased the specific glutamine consumption rate by directly or indirectly inhibiting the transamination. It is expected that the routine inclusion of DCA in media used for hybridoma cultivation will be valuable for enhancement of monoclonal antibody (Mab) yields on a laboratory scale. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
The effect of shear rate on cell growth and monoclonal antibody production of hybridoma cells was studied. The dependence of agitation rate on antibody production is discussed by measuring the amount of monoclonal antibody in cells cultured by a spinner vessel. The effect of shear rate is also studied by exposing a homogeneous shear flow to hybridoma cells in a cone-and-plate viscometer. The dependence of shear rate on hybridoma cells was observed and the increase of antibody production was arised from the increase of secretion from cells.  相似文献   

15.
Growth of antibody-secreting hybridomas requires special conditions such as serum-free defined media containing growth factors and vitamins. However, the surface on which these cells can proliferate has been shown to play an important role. Phosphorylcholine (PC)-based polymers are zwitterionic compounds with nonbiofouling properties. These polymers are characterized by having reduced protein absorption properties. Our aim was to determine whether well-established hybridoma cell lines were able to proliferate and produce measurable amounts of monoclonal antibodies when grown on PC-polymer-coated surfaces. Comparative experiments using four well-known hybridoma cell lines (PAb421, PAb246, PAb1801 which recognize p53, and PAb280 which recognizes SV40 small t antigen) grown on PC-polymer-coated, uncoated, and two commercially available tissue culture plates showed that PC-polymer-coated plates were more efficient than uncoated plates in sustaining cell growth and monoclonal antibody production/secretion as defined by growth assays and ELISA. Also, results demonstrated that PC-polymer-coated plates were able to perform better than commercially available plates. These observations suggest that PC polymers could be used as an alternative, efficient surface coating to grow hybridoma cell lines and allow detectable antibody secretion.  相似文献   

16.
Factors affecting cell growth and antibody production in a mouse hybridoma were investigated. Antibody was produced during the growth and decline phases of a batch culture with an increase in the specific rate of antibody production during the decline phase. The specific rate of antibody production was also increased in cells arrested by 2 mM thymidine, suggesting that cell proliferation and antibody production can be uncoupled. Reduced serum concentrations resulted in lower cell growth rates but increased antibody production rates. However, this trend was reversed in hybridomas which had been arrested by thymidine, since the highest antibody production rate was associated with high serum concentrations. Likewise, in proliferating cells, the optimum pH for antibody production (pH 6.8) was lower than the optimum pH for cell growth (pH 7.2), whereas in thymidine-blocked cells, the highest antibody production rate was at pH 7.2. High antibody production rates and product yields were also associated with low growth rates in continuous cultures. The possibility that antibody was under cell cycle control was investigated in synchronized hybridoma cultures. Antibody production occurred during G1 and G2 with a decline in the M phase and evidence of a further decline in the S phase. Thus antibody production was not restricted to the G1 and S phase in this hybridoma.  相似文献   

17.
Monoclonal antibodies (mAb) are high added value glycoproteins recommended for immunotherapy, diagnosis, and also for the treatment of bacterial infections resistant to multiple drugs such as Methicillin Resistant Staphylococcus aureus (MRSA). In addition to environmental conditions related to cell cultures, the intrinsic characteristics of hybridoma cells, like the secretion stability of monoclonal antibodies by the cells through successive subcultures, are relevant for the characterization of cell lines related to the productivity of mAb. The rate of mAb production differs significantly between different cell lines and different passage numbers, and it is an important variable in characterization of cell lines. In order to find a more robust, faster-growing, and higher-productivity cell line of hybridoma, cultivations in 24-well plates were performed in different subculture periods, or cell passages (P), of hybridoma cells producing MRSA anti-PBP2a monoclonal antibodies [MRSA-antiPBP2a (mAb)]. The objective of this study was to study the effects of cell growth and production of MRSA-antiPBP2a mAb secreted by murine hybridoma cells grown in different passages as well as determine the which passages the hybridomas can be cultivated without harming their growth and productivity. So, cell growth profiles of hybridomas secreting MRSA-antiPBP2a (mAb) and the production of MRSA-antiPBP2a mAb in different subculture periods or cell passages (P) were studied. Cell growth tests, monoclonal antibody productivity, and metabolite characteristics revealed substantial differences in those cells kept between P10 and P50. Similarities in the secretion of monoclonal antibody, growth, and metabolic profiles, were noted in the MRSA-antiPBP2a mAb producing hybridoma cells kept between P10 and P20. Also, glucose consumption (g/L) and lactate production (g/L) in the latter cell cultures were monitored daily through biochemical analyzer. As of P30, it was observed a 4.4 times reduction in productivity, a 13 % reduction in metabolic yield, and a significant change in cell growth. Secretion of MRSA-antiPBP2a mAb should be obtained through the culture of hybridomas up to P20 in order to keep its stability.  相似文献   

18.
A new serum-free medium for monoclonal antibody production   总被引:3,自引:0,他引:3  
A new serum-free, defined-protein, medium for the growth of murine hybridoma cells and the production of monoclonal antibodies has been developed. Designated WRC 935 medium, this formulation supports the growth of hybridoma cells in higher numbers, and promotes better cell viabilities and increased monoclonal antibody levels compared to growth in DMEM supplemented with 10% fetal bovine serum or in a DMEM/F-12 serum-free mixture. In suspension cultures, WRC 935 medium typically promoted cell growth to densities over two million cells per milliliter. This medium also promoted the rapid growth of cells following their transfer from liquid nitrogen storage. WRC 935 medium is especially useful for high density cell culture production methods using hollow-fiber bioreactors. Hollow-fiber bioreactors using this medium produced antibody at an average rate of 11 mg/day, and the antibody concentration ranged from 10 to 40 mg/ml.  相似文献   

19.
Dynamic optimization of hybridoma growth in a fed-batch bioreactor   总被引:4,自引:0,他引:4  
This study addressed the problem of maximizing cell mass and monoclonal antibody production from a fed-batch hybridoma cell culture. We hypothesized that inaccuracies in the process model limited the mathematical optimization. On the basis of shaker flask data, we established a simple phenomenological model with cell mass and lactate production as the controlled variables. We then formulated an optimal control algorithm, which calculated the process-model mismatch at each sampling time, updated the model parameters, and re-optimized the substrate concentrations dynamically throughout the time course of the batch. Manipulated variables were feed rates of glucose and glutamine. Dynamic parameter adjustment was done using a fuzzy logic technique, while a heuristic random optimizer (HRO) optimized the feed rates. The parameters selected for updating were specific growth rate and the yield coefficient of lactate from glucose. These were chosen by a sensitivity analysis. The cell mass produced using dynamic optimization was compared to the cell mass produced for an unoptimized case, and for a one-time optimization at the beginning of the batch. Substantial improvements in reactor productivity resulted from dynamic re-optimization and parameter adjustment. We demonstrated first that a single offline optimization of substrate concentration at the start of the batch significantly increased the yield of cell mass by 27% over an unoptimized fermentation. Periodic optimization online increased yield of cell mass per batch by 44% over the single offline optimization. Concomitantly, the yield of monoclonal antibody increased by 31% over the off-line optimization case. For batch and fed-batch processes, this appears to be a suitable arrangement to account for inaccuracies in process models. This suggests that implementation of advanced yet inexpensive techniques can improve performance of fed-batch reactors employed in hybridoma cell culture.  相似文献   

20.
The effect of dexrazoxane on monoclonal antibody (Mab) production by CC9C10 hybridoma cells was investigated. Dexrazoxane is a catalytic inhibitor of DNA topoisomerase II. DNA topoisomerase II has a critical role in DNA metabolism and its inhibition by dexrazoxane can prevent completion of cytokinesis. Incubation of hybridomas with dexrazoxane was found to increase specific monoclonal antibody production by up to four-fold. However, due to the growth inhibitory effects of dexrazoxane the total Mab yield decreased by 40%. Under high density culture conditions(defined here as 106 cells ml-1) specific monoclonal antibody production increased by up to 37%, which was, however, accompanied by up to a 48% decrease in Mab yield. Hybridomasthat were incubated with dexrazoxane significantly increased in size due to the inhibition of cytokinesis. Dexrazoxane was also observed to induce a delayed apoptosis in the hybridomas. The caspase inhibitor Z-VAD-fmk slightly decreased the apoptotic effects of dexrazoxane. Preincubation with the caspase inhibitorZ-Asp-CH2-DCB had no effect on dexrazoxane-treated hybridomas, but it did have antiapoptotic effects on the untreated hybridomas which normally undergo a significant basal level of apoptosis. In conclusion, dexrazoxane-induced growth inhibition (which results in higher specific antibody production) and apoptosis inhibition (which results in prolonged viability) has the potential to significantly enhance the productivity of hybridoma cell cultures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号