首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.  相似文献   

2.
Extracellular matrix (ECM) glycoproteins are expressed in the central nervous system (CNS) in complex and developmentally regulated patterns. The ECM provides a number of critical functions in the CNS, contributing both to the overall structural organization of the CNS and to control of individual cells. At the cellular level, the ECM affects its functions by a wide range of mechanisms, including providing structural support to cells, regulating the activity of second messenger systems, and controlling the distribution and local concentration of growth and differentiation factors. Perhaps the most well known role of the ECM is as a substrate on which motile cells can migrate. Genetic, cell biological, and biochemical studies provide strong evidence that ECM glycoproteins such as laminins, tenascins, and proteoglycans control neuronal migration and positioning in several regions of the developing and adult brain. Recent findings have also shed important new insights into the cellular and molecular mechanisms by which reelin regulates migration. Here we will summarize these findings, emphasizing the emerging concept that ECM glycoproteins promote different modes of neuronal migration such as radial, tangential, and chain migration. We also discuss several studies demonstrating that mutations in ECM glycoproteins can alter neuronal positioning by cell nonautonomous mechanisms that secondarily affect migrating neurons.  相似文献   

3.
Symptoms originating from the central nervous system (CNS) occur frequently in patients with systemic lupus erythematosus (SLE), and CNS involvement in lupus is associated with increased morbidity and mortality. We recently showed that neurones and astrocytes are continuously damaged during the course of CNS lupus. The matrix metalloproteinases (MMPs) are a group of tissue degrading enzymes that may be involved in this ongoing brain destruction. The aim of this study was to examine endogenous levels of free, enzymatically active MMP-2 and MMP-9 in cerebrospinal fluid from patients with SLE. A total of 123 patients with SLE were evaluated clinically, with magnetic resonance imaging of brain and cerebrospinal fluid (CSF) analyses. Levels of free MMP-2 and MMP-9 were determined in CSF using an enzymatic activity assay. CSF samples from another 22 cerebrally healthy individuals were used as a control. Intrathecal MMP-9 levels were significantly increased in patients with neuropsychiatric SLE as compared with SLE patients without CNS involvement (P < 0.05) and healthy control individuals (P = 0.0012). Interestingly, significant correlations between MMP-9 and intrathecal levels of neuronal and glial degradation products were noted, indicating ongoing intrathecal degeneration in the brains of lupus patients expressing MMP-9. In addition, intrathecal levels of IL-6 and IL-8 – two cytokines that are known to upregulate MMP-9 – both exhibited significant correlation with MMP-9 levels in CSF (P < 0.0001), suggesting a potential MMP-9 activation pathway. Our findings suggest that proinflammatory cytokine induced MMP-9 production leads to brain damage in patients with CNS lupus.  相似文献   

4.
Neurochemical Research - Ergothioneine (ERGO) is a thiol contained in the food that exhibits an excellent antioxidant effect similar to that of glutathione. Although mammals lack a biosynthetic...  相似文献   

5.
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.  相似文献   

6.
7.
8.
Robust axonal growth is required during development to establish neuronal connectivity. However, stable fibre patterns are necessary to maintain adult mammalian central nervous system (CNS) function. After adult CNS injury, factors that maintain axonal stability limit the recovery of function. Extracellular molecules play an important role in preserving the stability of the adult CNS axons and in restricting recovery from pathological damage. Adult axonal growth inhibitors include a group of proteins on the oligodendrocyte, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein and ephrin-B3, which interact with axonal receptors, such as NgR1 and EphA4. Extracellular proteoglycans containing chondroitin sulphates also inhibit axonal sprouting in the adult CNS, particularly at the sites of astroglial scar formation. Therapeutic perturbations of these extracellular axonal growth inhibitors and their receptors or signalling mechanisms provide a degree of axonal sprouting and regeneration in the adult CNS. After CNS injury, such interventions support a partial return of neurological function.  相似文献   

9.
Decreased degradation of the glomerular extracellular matrix (ECM) is thought to contribute to the accumulation of glomerular ECM that occurs in diabetic nephropathy and other chronic renal diseases. Several lines of evidence indicate a key role for the plasminogen activator/plasminogen/plasmin system in glomerular ECM degradation. However, which of the two plasminogen activators (PAs) present in renal tissue, tissue plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA), is responsible for plasmin generation and those factors that modulate the activity of this system remain unclear. This study utilized mesangial cells isolated from mice with gene deletions for tPA, uPA, and plasminogen activator inhibitor 1 (PAI-1) to further delineate the role of the PA/plasminogen/plasmin system in ECM accumulation. ECM degradation by uPA-null mesangial cells was not significantly different from controls (92% +/- 1%, n = 12). In contrast, ECM degradation by tPA-null mesangial cells was markedly reduced (-78 +/- 1%, n = 12, P < 0.05) compared with controls, whereas tPA/uPA double-null mesangial cells degraded virtually no ECM. Previous studies from this laboratory have established that transforming growth factor-beta1 (TGFbeta1) inhibits ECM degradation by cultured mesangial cells by increasing the production of PAI-1, the major physiological PA inhibitor. In keeping with this observation, TGFbeta1 (1 ng/ml) had no effect on ECM degradation by PAI-1-null MC. High glucose levels (30 mM) in the presence or absence of insulin (0.1 mM) caused a moderate increase in ECM degradation by normal human mesangial cells. In contrast, glycated albumin, whose concentration is known to increase in diabetes, produced a dose-dependent (0.2-0.5 mg/ml) inhibition of ECM degradation by normal human mesangial cells. Taken together, these results document the importance of tPA versus uPA in renal plasmin production and indicate that in contrast to elevated glucose, glycated albumin may contribute to ECM accumulation in diabetic nephropathy.  相似文献   

10.
Diffusion in the extracellular space (ECS) is crucial for normal central nervous system physiology. The determinants of ECS diffusion include viscous interactions with extracellular matrix/plasma membranes ("viscosity") and ECS geometry ("tortuosity"). To resolve viscosity versus tortuosity effects, we measured direction-dependent (anisotropic) diffusion in ECS in mouse spinal cord by photobleaching using an elliptical spot produced by a cylindrical lens in the excitation path. Anisotropic diffusion slowed fluorescence recovery when the long axis of the ellipse was parallel versus perpendicular to the direction of faster diffusion. A mathematical model was constructed to deduce diffusion coefficients (D(x), D(y)) from fluorescence recovery measured for parallel and perpendicular orientations of the long axis of the ellipse. Elliptical spot photobleaching was validated by photobleaching aqueous-phase fluorophores on a diffraction grating, where diffusion is one-dimensional. Measurement of the diffusion of 70 kDa FITC-dextran in spinal cord in living mice indicated that viscosity slows diffusion by approximately 1.8-fold compared with its diffusion in solution. ECS geometry hinders diffusion across (but not along) axonal fibers in spinal cord further by approximately fivefold. In cerebral cortex, however, approximately 50% of the hindrance to ECS diffusion comes from viscosity and approximately 50% from tortuosity. We suggest that the extracellular matrix might have evolved to facilitate rather than hinder diffusion even for large molecules.  相似文献   

11.
Glycosylation consists in the covalent linkage of a carbohydrate structure to membrane bound and secreted glycoconjugates. It is a common post-translational modification that serves multiple functions in cell differentiation, signaling and intercellular communication. Unlike DNA/RNA/protein, the addition of complex carbohydrates is not-template driven and it is conceivable that both genetics and environmental factors might interact to influence glycosylation machinery in several pathological processes. Over the last few decades, the recognition of Congenital Disorders of Glycosylation (CDG) as an increasing number of genetic diseases of glycosylation with almost constant nervous system involvement, dramatically illustrated the consequences of abnormal glycosylation as improper CNS development and function. In addition, CDG recognition contributed to postulate that aberrant glycosylation processes might play a role in multifactorial, complex CNS diseases. On this context, CNS glycomics explores the effects of possible aberrant glycosylation to identify potential glyco-biomarkers useful for the diagnosis and ultimately for potential intervention strategies in neurological diseases. Up to date, CNS glycomics is an emerging, still uncharted area because of the specificity of CNS glycosylation, the complexity of the neurological disorders and for the inaccessibility and invasiveness of disease relevant samples. Here we review current knowledge on clinical glycomics of nervous system diseases, starting with CDG to include those pediatric and adulthood neuropsychiatric diseases where some evidences suggest that multifactor determinants converge to dysregulate glycosylation. Conventional and mass spectrometry-based high throughput technology for glyco-biomarker detection in CNS diseases is reported.  相似文献   

12.
中枢神经系统疾病因其发病机制复杂而难以找到药物作用的有效靶点。甘丙肽(galanin, GAL)因其广泛的中枢神经系统分布并与多种神经系统疾病密切相关而进入人们的视线。现已证明,GAL与三种G蛋白偶联受体(GALR1-3)结合后,通过抑制cAMP/PKA(GALR1、GALR3)和激活磷脂酶C(GALR2)等信号通路调节众多生理和病理过程。本文概述了近年来GAL及其受体在中枢神经系统疾病中的作用的研究进展,旨在为理解这些疾病的发病机制以及靶向药物的研发提供新的指导。  相似文献   

13.
胰岛素对中枢神经系统疾病的影响   总被引:6,自引:0,他引:6  
越来越多的实验证据和临床资料表明,胰岛素在中枢神经系统中发挥重要作用。多种动物脑内有高水平的胰岛素,而且神经元和胶质细胞上均存在胰岛素受体和胰岛素第二信使系统。很多神经性疾病的发病机制都和胰岛素水平或胰岛素敏感性有关。同样,胰岛素样生长因子对神经元功能也有一定的调节作用。胰岛素和包括胰岛素样生长因子在内的多种神经营养因子,在治疗神经退行性疾病方面被人类寄予了厚望。  相似文献   

14.
15.
Yu  Yifei  Hou  Kun  Ji  Tong  Wang  Xishu  Liu  Yining  Zheng  Yangyang  Xu  Jinying  Hou  Yi  Chi  Guangfan 《Molecular and cellular biochemistry》2021,476(5):2111-2124
Molecular and Cellular Biochemistry - MicroRNAs (miRNA), endogenous non-coding RNAs approximately 22 nucleotides long, regulate gene expression by mediating translational inhibition or mRNA...  相似文献   

16.
Abstract

Studies on interaction of tumor cells with ECM components showed increased extracellular protease activity mediated by the family of matrix metalloproteinases (MMPs). Here we studied the effect of human prostate adenocarcinoma PC-3 cells–fibronectin (FN) interaction on MMPs and the underlying signaling pathways. Culturing of PC-3 cells on FN-coated surface upregulated MMP-9 and MMP-1. This response is abrogated by the blockade of α5 integrin. siRNA and inhibitor studies indicate possible involvement of phosphatidyl-inositol-3-kinase (PI-3K), focal adhesion kinase (FAK) and nuclear factor-kappaB (NF-κB) in FN-induced upregulation of MMPs. FN treatment also enhanced phosphorylation of FAK, PI3K, protein kinase B (PKB or Akt), nuclear translocation of NF-κB, surface expression of CD-44, and cell migration. Our findings indicate that, binding of PC-3 cells to FN, possibly via α5β1 integrin, induces signaling involving FAK, PI-3K, Akt, NF-κB followed by upregulation of MMP-9 and MMP-1. CD-44 may have role in modulating MMP-9 activity.  相似文献   

17.
18.
19.
Ape/Ref-1与中枢神经系统疾病的研究进展   总被引:3,自引:0,他引:3  
Yan JJ  Liu YX 《生理科学进展》2005,36(4):319-321
无嘌呤/无嘧啶核酸内切酶/氧化还原因子1(apurinic/apyrim id inic endonuclease/redox-factor1,Ape/Ref-1)是一种在体内分布非常广泛的蛋白质,具有修复损伤的DNA,调节氧化还原反应,参与细胞信号转导等多种功能,在维持基因组的完整、调节基因表达、细胞保护等许多方面发挥重要作用。本文着重论述Ape/Ref-1的结构和生物学功能,及其在中枢神经系统肿瘤、损伤等疾病中的作用。  相似文献   

20.
Fibrillin molecules form the structural framework of elastic fibrillin-rich microfibrils of the extracellular matrix. We have investigated the proteolysis of recombinant fibrillin molecules by five matrix metalloproteinases. Cleavage sites were defined at the carboxy-terminal end of the fibrillin-1 proline-rich region and the corresponding fibrillin-2 glycine-rich region (exon 10), and within exon 49 towards the carboxy-terminus of fibrillin-1. Cleavage at these sites is predicted to disrupt the structure and function of the fibrillin-rich microfibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号