首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have recently reported that skeletal muscle of the ob/ob mouse, an animal model of genetic obesity with extreme insulin resistance, exhibits alterations in the expression of multiple genes. Analysis and cloning of a full-length cDNA of one of the overexpressed mRNAs revealed a 300-amino-acid protein that could be identified as the mouse geranylgeranyl diphosphate synthase (GGPP synthase) based on its homology to proteins cloned from yeast and fungus. GGPP synthase catalyzes the synthesis of all-trans-geranylgeranyl diphosphate (GGPP), an isoprenoid used for protein isoprenylation in animal cells, and is a branch point enzyme in the mevalonic acid pathway. Three mRNAs for GGPP synthase of 4.3, 3.2, and 1.7 kb were detected in Northern blot analysis. Western blot analysis of tissue homogenates using specific antipeptide antibodies revealed a single band of 34.8 kDa. Expression level of this protein in different tissues correlated with expression of the 4.3- and 3.2-kb mRNAs. GGPP synthase mRNA expression was increased 5- to 20-fold in skeletal muscle, liver, and fat of ob/ob mice by Northern blot analysis. Western blot analysis also showed a twofold overexpression of the protein in muscle and fat but not in liver, where the dominant isoform is encoded by the 1.7-kb mRNA. Differentiation of 3T3-L1 fibroblasts into adipocytes induced GGPP synthase expression more than 20-fold. Using the immunoprecipitated protein, we found that mammalian GGPP synthase synthesizes not only GGPP but also its metabolic precursor farnesyl diphosphate. Thus, the expression of GGPP synthase is regulated in multiple tissues in obesity and is induced during adipocyte differentiation. Altered regulation in the synthesis of isoprenoids for protein prenylation in obesity might be a factor determining the ability of the cells to respond to hormonal stimulation requiring both Ras-related small GTPases and trimeric G protein-coupled receptors.  相似文献   

3.
4.
Many murine cells express two mRNAs with markedly different sizes (2.0 and 3.1 kilobases (kb)) that hybridize with cDNA probes for cytosolic malic enzyme ((S)-malate NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40). A series of overlapping cDNA clones corresponding to 3129 nucleotides of malic enzyme mRNA was isolated and sequenced to determine the relationship between the two mRNAs and establish the primary structure of mouse malic enzyme. The larger mRNA has an open reading frame of 1716 nucleotides followed by a 3' untranslated region of 1348 nucleotides. The sequence of an exceptionally G/C-rich (88%) portion (65 nucleotides) of the 5' noncoding region was also established. An uncommon poly A addition signal (AUUAAA) is used during the processing of the 3.1-kb mRNA. The 2.0-kb mRNA results from the utilization of another poly A addition signal that truncates the 3' noncoding sequence by approximately 1 kb. The mRNA coding sequence indicates that the malic enzyme subunit contains 572 amino acid residues and has a Mr of 64,000. Two putative components of an NADP-binding domain are located between residues 100 and 165. During the differentiation of 3T3-L1 preadipocytes into adipocytes both the rate of synthesis and relative mRNA concentration for malic enzyme and another lipogenic enzyme, ATP-citrate lyase, are coordinately increased 5-7-fold. However, as preadipocytes approach confluence, the mRNA levels for both lipogenic enzymes transiently increase 3-4-fold, whereas the rates of synthesis of the two proteins are only slightly elevated. Thus, lipogenic enzyme expression is controlled at a pretranslational level during adipogenesis, but the accumulation of the same enzymes may also be subject to translational control in the fibroblast-like preadipocytes. In contrast, mRNA coding for a third enzyme required for lipogenesis, glycerol-3-phosphate dehydrogenase, is not detected in 3T3-L1 preadipocytes, but rapidly accumulates during adipocyte development.  相似文献   

5.
6.
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells.  相似文献   

7.
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type and SREBP-1(-/-) mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1(-/-) mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1(-/-) livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1(-/-) mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.  相似文献   

8.
9.
10.
采用高效的由mRNA合成cDNA的方法,我们得到了含有3.7kb的脂肪酸合成酶基因片段的克隆pFAS_(203)。它具有限制内切酶PstⅠ、BamH Ⅰ、HineⅡ、PvuⅡ、Ava Ⅰ以及Pvu Ⅰ酶切位点,与已经得到的经杂交选择的mRNA离体翻译产物鉴定的cDNA克隆pFAS_(15)有部分重叠。对饥饿的糖尿病大鼠注射胰岛素并饲以无脂食物,肝中FAS mRNA以及其前体RNA含量增加,当注射后再饲无脂食物达12小对,肝中FASmRNA及其前体RNA约为糖尿病鼠的30倍。Poly(A)~+ RNA的Northern分析表明诱导期间FASmRNA含量增加而其分子大小不变。这些结果表明胰岛素对FAS基因的转录有调节作用。胰岛素诱导后的脂肪酸合成酶活性升高是在转录水平上调节的。  相似文献   

11.
A 12.5-kDa cysteine-rich adipose tissue-specific secretory factor (ADSF/resistin) is a novel secreted protein rich in serine and cysteine residues with a unique cysteine repeat motif of CX(12)CX(8)CXCX(3)CX(10)CXCXCX(9)CC. A single 0.8-kilobase mRNA coding for this protein was found in various murine white adipose tissues including inguinal and epididymal fats and also in brown adipose tissue but not in any other tissues examined. Two species of mRNAs with sizes of 1.4 and 0.8 kilobases were found in rat adipose tissue. Sequence analysis indicates that this is because of two polyadenylation signals, the proximal one with the sequence AATACA with a single base mismatch from murine AATAAA and the distal consensus sequence AATAAA. The mRNA level was markedly increased during 3T3-L1 and primary preadipocyte differentiation into adipocytes. Its expression in adipose tissue is under tight nutritional and hormonal regulation; the mRNA level was very low during fasting and increased 25-fold when fasted mice were refed a high carbohydrate diet. It was also very low in adipose tissue of streptozotocin-diabetes and increased 23-fold upon insulin administration. Upon treatment with the conditioned medium from COS cells transfected with the expression vector, conversion of 3T3-L1 cells to adipocytes was inhibited by 80%. The regulated expression pattern suggesting this factor as an adipose sensor for the nutritional state of the animals and the inhibitory effect on adipocyte differentiation implicate its function as a feedback regulator of adipogenesis.  相似文献   

12.
13.
A double-stranded cDNA library was constructed using total poly(A)+ RNA from the goose uropygial gland. Clones containing sequences complementary to fatty acid synthase mRNA were initially identified by colony hybridization with a 32P-labeled cDNA transcribed from RNA enriched for fatty acid synthase mRNA. Identity of the fatty acid synthase clones was confirmed by hybrid-selected translation. Mature fatty acid synthase mRNA is approximately 16 kilobases in length. When unfed neonatal goslings were fed for 24 hr, relative synthesis of hepatic fatty acid synthase increased more than 42-fold. Concomitantly, hepatic fatty acid synthase mRNA levels increased 70-fold. Thus, nutritional regulation of the synthesis of hepatic fatty acid synthase probably occurs at the pretranslational level. The availability of a specific probe for fatty acid synthase mRNA should allow us to analyze the regulation of expression of this gene during development, by nutrition and by hormones in both liver and uropygial gland.  相似文献   

14.
15.
A glucose transporter cDNA (GLUT) clone was isolated from mouse 3T3-L1 adipocytes and sequenced. The nucleotide and deduced amino acid sequences were, respectively, 95 and 99% homologous to those of the rat brain transporter. The mouse cDNA and a polyclonal antibody recognizing the corresponding in vitro translation product were used to compare changes in transporter mRNA and protein levels during differentiation, glucose starvation, and chronic insulin exposure of 3T3-L1 preadipocytes. The respective cellular content of transporter mRNA and protein were increased 6.6- and 7.8-fold during differentiation, and 3.8- and 2.5-fold from chronic insulin exposure of differentiated adipocytes. Glucose starvation increased transporter mRNA and protein levels 2.2- and 3.5-fold in undifferentiated preadipocytes and 1.8- and 3.1-fold in differentiated adipocytes. Starvation of undifferentiated cells completely converted the native transporter to an incompletely glycosylated form, while increasing basal transport rates 4.5-fold. Either full glycosylation is not required to produce a functionally active transporter, or starvation causes a unique predifferentiation induction of the normally absent "responsive" transporter. The changes in transporter protein expression elicited by differentiation were attributed primarily to increased rates of transporter synthesis, while the disproportionate changes in mRNA and protein expression from chronic insulin treatment and starvation suggested these conditions increase synthesis and decrease turnover rates in regulating transporter protein expression. Although chronic insulin exposure and glucose starvation each raised the expression of transporter protein greater than 3-fold and basal transport rates 2.5- to 4.5-fold, no significant increase in the insulin responsiveness of 3T3-L1 preadipocytes or differentiated adipocytes was observed. Thus, the changes in the transporter mRNA and protein expression observed in this study were most consistent with their being associated with the regulated expression of a basal or low level insulin-responsive transporter.  相似文献   

16.
Fatty acid synthesis in adipose tissue normally proceeds at a high rate when fasted animals are refed a diet containing carbohydrate, protein, and low levels of fat. This study investigated the effect of omitting protein from the refeeding diet. Rats were fasted for 48 hr and refed either a protein-free diet or a balanced diet, and the rate of fatty acid synthesis from glucose, pyruvate, lactate, and aspartate was measured. Refeeding the animals a diet devoid of protein resulted in a low rate of fatty acid synthesis from each of these substrates as well as a reduction in carbon flow over the citrate cleavage pathway. The activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP-malate dehydrogenase, and ATP-citrate lyase were also reduced in epididymal fat pads from these rats. On the other hand, adipose tissue phosphoenolpyruvate carboxykinase activity was five times as great as that in tissue from animals refed a balanced diet. This difference could be eliminated if actinomycin D was injected coincident with refeeding. Refeeding rats diets high in carbohydrate is not, therefore, capable of inducing high rates of fatty acid synthesis in adipose tissue in the absence of dietary proteins. Thus, liver and adipose tissue respond differently to dietary protein.  相似文献   

17.
18.
We previously reported that 2.1 kilobase pairs of the 5'-flanking sequence are sufficient for tissue-specific and hormonal/metabolic regulation of the fatty-acid synthase (FAS) gene in transgenic mice. We also demonstrated that the -65 E-box is required for insulin regulation of the FAS promoter using 3T3-L1 adipocytes in culture. To further define sequences required for FAS gene expression, we generated transgenic mice carrying from -644, -444, -278, and -131 to +67 base pairs of the rat FAS 5'-flanking sequence fused to the chloramphenicol acetyltransferase (CAT) reporter gene. Similar to the expression observed with -2100-FAS-CAT transgenic mice, transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT expressed high levels of CAT mRNA only in lipogenic tissues (liver and adipose tissue) in a manner identical to the endogenous FAS mRNA. In contrast, -278-FAS-CAT and -131-FAS-CAT transgenic mice did not show appreciable CAT expression in any of the tissues examined. When previously fasted mice were refed a high carbohydrate, fat-free diet, CAT mRNA expression in transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT was induced dramatically in liver and adipose tissue. The induction was virtually identical to that observed in -2100-FAS-CAT transgenic mice and to the endogenous FAS mRNA. In contrast, -278-FAS-CAT transgenic mice showed induction by feeding, but at a much lower magnitude in both liver and adipose tissue. The -131-FAS-CAT transgenic mice did not show any CAT expression either when fasted or refed a high carbohydrate diet. To study further the effect of insulin, we made these transgenic mice insulin-deficient by streptozotocin treatment. Insulin administration to the streptozotocin-diabetic mice increased CAT mRNA levels driven by the -644 FAS and -444 FAS promoters in liver and adipose tissue, paralleling the endogenous FAS mRNA levels. In the case of -278-FAS-CAT, the induction observed was at a much lower magnitude, and deletion to -131 base pairs did not show any increase in CAT expression by insulin. This study demonstrates that the sequence requirement for FAS gene regulation employing an in vitro culture system does not reflect the in vivo situation and that two 5'-flanking regions are required for proper nutritional and insulin regulation of the FAS gene. Cotransfection of the upstream stimulatory factor and various FAS promoter-luciferase constructs as well as in vitro binding studies suggest a function for the upstream stimulatory factor at both the -65 and -332 E-box sequences.  相似文献   

19.
The hexosamine signaling pathway has been shown to serve a nutrient-sensing function. We have previously shown that overexpression of the rate-limiting enzyme for hexosamine synthesis (glutamine-fructose-6-phosphate amidotransferase) in adipose tissue of transgenic mice results in skeletal muscle insulin resistance and altered regulation of leptin and adiponectin. To dissect the pathways by which the hexosamine pathway affects fuel storage and energy homeostasis, we have examined the characteristics of adipocytes from these animals. After 3 mo of age, epididymal fat pads from adult transgenic animals are 42% heavier (P = 0.003) and individual adipocytes are 23% larger in diameter (P < 0.05) than those from littermate wild-type controls. Isolated adipocytes from transgenic mice are insulin resistant, with a 2.5-fold increase in the ED50 for stimulation of 2-deoxy-D-glucose uptake. However, maximal insulin-stimulated glucose uptake is increased in transgenic adipocytes by 39% (P < 0.05). This upregulation of glucose uptake was associated with a 41% increase in the expression of GLUT4 mRNA and a 28% increase in GLUT4 protein in transgenics compared with controls (P < 0.05). GLUT1 mRNA and protein did not significantly differ between fasted control and transgenics. Total lipid synthesis was also increased in epididymal adipocytes from transgenic animals by 206% compared with controls (P < 0.05). Fatty acid oxidation was increased 1.6-fold in the transgenic adipocytes (P < 0.05). We conclude that the hexosamine signaling pathway upregulates fat storage in adipocytes in states of carbohydrate excess, in part by increasing GLUT4 and glucose uptake and by augmenting fatty acid synthesis.  相似文献   

20.
Using a cDNA probe complementary to rat L-type pyruvate kinase mRNAs, we studied the respective roles of glucocorticoids, thyroid hormones, glucagon, and insulin in the induction of specific mRNAs in the liver of animals refed either a maltose-rich or a fructose-rich diet. Neither adrenalectomized nor thyroidectomized nor diabetic animals could express L-type pyruvate kinase mRNAs in their liver when refed the carbohydrate-rich diets. When the animals were given the missing hormone, the level of hybridizable mRNAs returned to normal values but administration of the hormone alone failed to induce mRNA synthesis in fasted animals. Both glucagon and cyclic AMP abolished the induction of L-type pyruvate kinase mRNAs in refed animals. Exogenous insulin, whatever the dose, could not reverse the inhibitory action of glucagon. Insulin has usually been regarded as the main regulator of L-type pyruvate kinase gene expression. It appears now that glucagon, beside regulating the enzyme activity by phosphorylation mechanisms, may also modulate L-type pyruvate kinase synthesis at a pre-translational level. Consequently, our results show that three conditions are required for the synthesis of liver L-type pyruvate kinase mRNAs: (i) the presence of dietary carbohydrates, (ii) the cessation of glucagon release, and (iii) the presence of permissive hormones, including insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号