首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The threat of excessive nutrient enrichment, or eutrophication, is intensifying across the globe as climate change progresses, presenting a major management challenge. Alterations in precipitation patterns and increases in temperature are increasing nutrient loadings in aquatic habitats and creating conditions that promote the proliferation of cyanobacterial blooms. The exacerbating effects of climate warming on eutrophication are well established, but we lack an in-depth understanding of how aquatic ectotherms respond to eutrophication and warming in tandem. Here, I provide a brief overview and critique of studies exploring the cumulative impacts of eutrophication and warming on aquatic ectotherms, and provide forward direction using mechanistically focused, multi-threat experiments to disentangle complex interactions. Evidence to date suggests that rapid warming will exacerbate the negative effects of eutrophication on aquatic ectotherms, but gradual warming will induce physiological remodelling that provides protection against nutrients and hypoxia. Moving forward, research will benefit from a greater focus on unveiling cause and effect mechanisms behind interactions and designing treatments that better mimic threat dynamics in nature. This approach will enable robust predictions of species responses to ongoing eutrophication and climate warming and enable the integration of climate warming into eutrophication management policies.  相似文献   

2.
de Jonge  Victor N.  Elliott  M.  Orive  E. 《Hydrobiologia》2002,(1):1-19
The impact of the presence of us humans as well as our activities to nature has led to over-exploitation of natural resources and to dramatic changes in land-use including the use of artificial fertilizers contributes to the deterioration of the natural environment. The population density, industrial processes and the use of fertilizers are the main causes for the eutrophication of river systems, estuaries and seas. There are several ways to determine the actual nutrient levels back to the 1950s, back to 1900 or even back to 1800. Available data indicate that the natural background concentrations of nutrients (pristine conditions or the period prior to the widespread use of artificial fertilizers and detergents) were dramatically lower than today. Available time series on chemical and biological data collected from different parts of the world show the (sometimes tremendous) increase in nutrient levels and the related productivity. The same time series, however, also show the decreases in values when measures were taken to reduce the nutrient emissions. Investigations of different systems all over the world show that nearly every system responses differently to eutrophication. Especially physical boundary conditions play an important role in the manifestation of the ultimate effect of local eutrophication. Apart from the physical boundary conditions also the transformation and retention of nutrients in estuarine and coastal systems contribute to system specific responses. Depending on all these different conditions, site specific responses with even site specific problems may occur. The challenge of this millennium is to really reach a balance between nature and mankind including its population size. A beneficial step in this discussion is assessing criteria to reduce eutrophication back to a level acceptable to both humans and nature.  相似文献   

3.
While eutrophication remains one of the main pressures acting on freshwater ecosystems, the prevalence of anthropogenic and nature‐induced stochastic pulse perturbations is predicted to increase due to climate change. Despite all our knowledge on the effects of eutrophication and stochastic events operating in isolation, we know little about how eutrophication may affect the response and recovery of aquatic ecosystems to pulse perturbations. There are multiple ways in which eutrophication and pulse perturbations may interact to induce potentially synergic changes in the system, for instance, by increasing the amount of nutrients released after a pulse perturbation. Here, we performed a controlled press and pulse perturbation experiment using mesocosms filled with natural lake water to address how eutrophication modulates the phytoplankton response to sequential mortality pulse perturbations; and what is the combined effect of press and pulse perturbations on the resistance and resilience of the phytoplankton community. Our experiment showed that eutrophication increased the absolute scale of the chlorophyll‐a response to pulse perturbations but did not change the proportion of the response relative to its pre‐event condition (resistance). Moreover, the capacity of the community to recover from pulse perturbations was significantly affected by the cumulative effect of sequential pulse perturbations but not by eutrophication itself. By the end of the experiment, some mesocosms could not recover from pulse perturbations, irrespective of the trophic state induced by the press perturbation. While not resisting or recovering any less from pulse perturbations, phytoplankton communities from eutrophying systems showed chlorophyll‐a levels much higher than non‐eutrophying ones. This implies that the higher absolute response to stochastic pulse perturbations in a eutrophying system may increase the already significant risks for water quality (e.g., algal blooms in drinking water supplies), even if the relative scale of the response to pulse perturbations between eutrophying and non‐eutrophying systems remains the same.  相似文献   

4.
大型海藻的营养盐代谢及其与近岸海域富营养化的关系   总被引:2,自引:0,他引:2  
大型海藻是近岸海域重要的初级生产者,近年来人们愈来愈认识到大型海藻在近岸海域富营养化生物修复中的重要性,同时,富营养化也可能招致某些机会主义大型海藻种类的爆发生长,因此,进一步理解大型海藻与营养盐供应变化的关系就显得非常重要。本文从大型海藻营养盐代谢与海水中营养盐供应变化(主要是富营养化)的生理生态关系角度对相关问题进行评述,主要包括影响大型海藻营养盐吸收特性的重要因素、海水中营养盐的供应及大型海藻对营养盐的细胞贮存、大型海藻对营养盐的生态需求、大型海藻对近岸海域富营养化的生态响应等问题。文章还对今后的研究提出了展望。  相似文献   

5.
Bostrychia montagnei was submitted to aqueous extraction at 25 and 85 °C. The purified polysaccharide extracts represent ∼ 17% of the dried alga. Galactose is the principal monosaccharide component of these extracts (60.8–70.4 mol%). 3,6-Anhydrogalactose and its 2- O-methyl derivative are also present in smaller amounts (16.2–22.0 mol%), as well as other methylated sugars, such as 6- O- (6.5–7.8 mol%) and 2-O-methylgalactose (0.2–2.1 mol%). Xylose (4.1–8.1 mol%) and glucose (0.7–2.6 mol%) were also detected. The aqueous extracted polysaccharides (25 °C) were separated by anion-exchange chromatography into six sulphated galactan fractions with negative specific rotations and another two with high xylose contents and positive specific rotations. The sulphated galactans all have an agar type backbone modified by partial O-methyl substitution on O-6 or O-2 of the galactosyl units. The latter substitution is also present in varying degrees of 3,6-anhydrogalactose. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Tubificid and lumbriculid worms were used to monitor, at depths of 150 m, the recovery of Lake Geneva (Switzerland) from eutrophication. As predicted from the decrease of phosphorus concentrations, relative abundance of oligotrophic species was higher from 1988 to 1993 than in 1983, i.e. before the abatement of eutrophication. However, this trend towards oligotrophication can be reversed, as indicated by a decrease of oligotrophic species, recorded in 1993. But this change corresponded to the effects of an increase of water temperature on the abundance of the mesotrophic species Potamothrix vejdovskyi rather than to a deterioration of the profundal. In addition to this short-term setback, oligochaete communities located at a depth of 150 m responded more slowly and less clearly to the decrease of phosphorus concentrations than those located at a depth of 40 m. However, the zoobenthos indicated more clearly the recovery of Lake Geneva than the phytoplankton.  相似文献   

7.
焦聪聪  赵大勇  曾巾 《生态学报》2024,44(14):5925-5944
细菌是湖泊生态系统的重要组成部分,在驱动湖泊生态系统元素物质循环和调控湖泊水质方面发挥关键性作用。揭示湖泊细菌群落多样性的形成和维持机制,即群落构建机制,是湖泊微生物生态学研究中的核心目标。近年来,微生物组学技术的发展,极大推动了湖泊细菌群落构建机制的研究。富营养化是当前我国湖泊生态系统面临的最大环境挑战之一,也是决定湖泊细菌群落组成和多样性的重要因素。研究综述了湖泊细菌群落构建机制的理论基础和发展脉络。概述了湖泊细菌群落构建机制的主要分析方法。总结了富营养化对湖泊细菌群落构建机制的影响的最新研究进展。针对富营养化影响下湖泊细菌群落构建机制研究所面临的问题,提出了未来的研究展望。  相似文献   

8.
Some ecological properties in relation to eutrophication in the Baltic Sea   总被引:1,自引:0,他引:1  
Bonsdorff  E.  Rönnberg  C.  Aarnio  K. 《Hydrobiologia》2002,(1):371-377
The current published information of the influence of eutrophication on the Baltic Sea is reviewed and summarized. Harmful effects at different levels of the ecosystem are identified, and the spatial and temporal variability of these properties characterized. The Baltic Marine Environment Bibliography was searched on the web, and some 1170 references with eutrophication as a keyword were extracted and analyzed. The most studied regions were the Gulf of Finland (including the Archipelago Sea), Kattegat and the Bothnian Sea. The search was further divided into several parameters (transparency, oxygen/hypoxia, nutrients, primary production/ chlorophyll a, algal mats, macroalgae, zoobenthos and fish) related to eutrophication. In most regions, chlorophyll, zoobenthos and fish were the most commonly studied biological and ecological parameters. The linking of eutrophication, ecology and a potential decision-support system is discussed, and related to similar attempts elsewhere.  相似文献   

9.
Hypereutrophic waters, which are characterized by nutrient inputs exceeding phytoplankton nutrient requirements, are often sites of chronic nuisance algal blooms and associated water quality deterioration problems. In order to restore such systems to acceptable water quality standards, identification of growth-limiting nutrients is of central importance. Conventional nutrient addition bioassay techniques are often ineffective in identifying potentially limiting nutrients, due to persistent nutrient excesses in hypereutrophic systems. Accordingly, we have developed a nutrient dilution bioassay, in which stepwise dilutions of phytoplankton nutrients (nitrogen, phosphorus, iron, trace metals) with a nutrient-free major ion solution are capable of; 1) identifying those nutrients potentially most limiting, and 2) establishing magnitudes of respective nutrient input cutbacks required to bring about nutrient-limited control of phytoplankton growth. In situ deployment of dilution bioassays should help establish criteria governing minimal nutrient inputs required to arrest undesirable impacts of hypereutrophy. We have evaluated the field applicability of dilution bioassays, during a 2 year trial in the periodically hypereutrophic Neuse River, North Carolina.  相似文献   

10.
Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.  相似文献   

11.
SUMMARY 1. We examined whether a large stock of tilapia (>750 kg ha?1, in littoral areas >1300 kg ha?1), mostly Oreochromis niloticus (L.) and Tilapia rendalli (Boulenger), could contribute to the eutrophication of a tropical reservoir (Lago Paranoá, Brasília, Brazil) by enhancing P‐loading. 2. We took advantage of an extensive fish kill (>150 tons removed) during May–August 1997 in a hypereutrophic branch of the reservoir to compare water quality characteristics 1 year before and after this event by means of BACI statistics. We also measured P‐excretion rates in laboratory trials to assess the P‐loading of the reservoir by the tilapia relative to tributary inputs and loading from a sewage treatment plant. 3. Concentrations of chlorophyll a (decline from 84 to 56 μg L?1, P=0.018) and total P (decline from 100 to 66 μg L?1, P < 0.001) decreased significantly in the branch of the reservoir affected by the fish kill, compared with a similar but unaffected branch that served as a control. Because P‐loading by both a sewage treatment plant and tributaries remained high after the incidence, the fish kill was likely to contribute to the observed water quality improvement. 4. Removing 150 tons of dead tilapia corresponded to 20 days of external total phosphorus load (TP‐load) to the branch, and resulted in a reduction of 5.1 kg P day?1 in internal recycling via tilapia excretion, which is equivalent to 12% of the external TP‐load. 5. Implementing professional tilapia cast‐net fisheries could be an efficient biomanipulation approach to improve water quality and limit the occurrence of cyanobacteria blooms and fish kills in hypereutrophic branches of Lago Paranoá and similar tropical lakes.  相似文献   

12.
The morphological development of three species of Caulerpa, C. sertularioides, C. paspaloides and C. racemosa has been studied in low light culture. The resulting morphologies are described and contrasted with the typical morphologies. Culture forms in all cases were unlike the field forms but each had affinities with other taxa described in the literature. The most important generalized response was a change in the symmetry of the assimilators from radial to bilateral. This response supports an earlier morphologically based theory on the evolutionary relationships among the species of Caulerpa.  相似文献   

13.
14.
Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical–biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012–2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid‐21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic–pelagic coupling might be weaker in a warmer and less eutrophic sea.  相似文献   

15.
真光层深度的遥感反演及其在富营养化评价中的应用   总被引:2,自引:0,他引:2  
乐成峰  李云梅  查勇  孙德勇  王莉珍 《生态学报》2008,28(6):2614-2614~2621
真光层深度直接影响水体中浮游植物的分布和初级生产力以及水体生态环境,是水生态研究的一个重要参数.利用2006年10月24日~11月2日太湖水下实测光谱数据和光合有效辐射(PAR)数据,通过数据的处理和分析,尝试建立真光层深度与水面以下遥感反射率的关系模型,并利用真光层深度与透明度的关系,建立水体富营养化真光层深度评价模型.研究结果表明:真光层深度与归一化遥感反射率具有很好的相关性;选用特定波段的归一化反射率作为变量,建立两者的关系模型能较好的反演真光层深度,所建立的模型算法中,指数模型拟合方程的综合效果好于其他模型,波段比值算法反演精度要好于单波段算法;利用利用真光层深度进行富营养化评价具有一定的应用价值,利用该模型对太湖水体进行富营养化评价,得出太湖西部湖区大部分已富营养化,东部湖区处于中营养化和轻度富营养化状态.  相似文献   

16.
1. We conducted field experiments to examine factors influencing macroinvertebrate colonization of seasonally flooded marshes. Few macroinvertebrate species were found aestivating in soils within non-flooded wetlands indicating that most taxa colonize these marshes from other flooded habitats.
2. We manipulated amounts of salt grass ( Distichlis spicata ) to examine how emergent plant cover affects aerial colonization by macroinvertebrates. Areas mowed 3 weeks before flooding had low plant cover, areas mowed 5 and 9 weeks before flooding had medium and high plant cover, respectively, and non-mowed control areas had the most plant cover. Macroinvertebrate numbers and biomass were generally higher in mowed treatment areas than in control areas, but overall diversity was generally higher in high plant cover and control areas than in low plant cover areas.
3. Mosquitoes (Culicidae), brine flies (Ephydridae) and hover flies (Syrphidae) were positively correlated with amount of plant cover, and waterboatmen (Corixidae), midges (Chironomidae) and water scavenger beetles (Hydrophilidae) were negatively correlated with plant cover. Species assemblages changed seasonally among treatment areas because these taxa colonize wetlands at different times in the year.
4. These results demonstrate that invertebrate communities may be different within plant stands with heterogeneous amounts of emergent cover, and management practices that alter the structure of wetland vegetation can influence macroinvertebrate communities colonizing seasonal marshes.  相似文献   

17.
Blooms of the raphidophyte Chattonella subsalsa have been associated with massive fish‐kill events in several parts of the world. However, there have been few studies into physiological responses of tropical strains that could contribute to bloom outcomes. Such knowledge could provide insight into the C. subsalsa blooms recently documented within tropical coastal waters (e.g., 2010 and 2012 events in Singapore). Strains used in this study were isolated from the East Johor Straits (EJS), Singapore, an enclosed water channel frequently subjected to high levels of eutrophication. These cells were classified within the ‘global’ clade (and distinct from the ‘Adriatic Sea’ clade) based on morphology. The present study examined cellular responses to varying inputs of different forms of nitrogen (N), specifically nitrate, ammonium, and urea. Results from the study indicated that cells were unable to utilize urea as an N‐source, but grew well on a nitrate (Vmax = 0.73 day?1) and ammonium (Vmax = 0.81 day?1) supply. These growth rates were high compared to other strains from around the world, indicating that tropical C. subsalsa could exhibit elevated bloom potential within frequently eutrophic environments such as the EJS. Six pigments were detected in all cultures. These pigments were chlorophylls a and c; fucoxanthin; diadinoxanthin; violaxanthin; and β‐carotene. Chlorophyll‐a and fucoxanthin were the dominant pigments under both nitrate and ammonium regimes. Measurements of chromophoric dissolved organic matter generally increased both in molecular weight and in total content across the N‐concentration ranges. Such outcomes could have consequences for the chemical and optical conditions of the coastal environment.  相似文献   

18.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

19.
Harmful algal blooms (HABs) are a global environmental concern, causing significant economic losses in fisheries and posing risks to human health. Algicidal bacteria have been suggested as a potential solution to control HABs, but their algicidal efficacy is influenced by various factors. This study aimed to characterize a novel algicidal bacterium, Maribacter dokdonensis (P4), isolated from a Karenia mikimotoi (Hong Kong strain, KMHK) HAB and assess the impact of P4 and KMHK's doses, growth phase, and algicidal mode and the axenicity of KMHK on P4's algicidal effect. Our results demonstrated that the algicidal effect of P4 was dose-dependent, with the highest efficacy at a dose of 25% v/v. The study also determined that P4's algicidal effect was indirect, with the P4 culture and the supernatant, but not the bacterial cells, showing significant effects. The algicidal efficacy was higher when both P4 and KMHK were in the stationary phase. Furthermore, the P4 culture at the log phase could effectively kill KMHK cells at the stationary phase, with higher algicidal efficacy in the bacterial culture than that of the supernatant alone. Interestingly, P4's algicidal efficacy was significantly higher when co-culturing with xenic KMHK (~90% efficacy at day 1) than that with the axenic KMHK (~50% efficacy at day 1), suggesting the presence of other bacteria could regulate P4's algicidal effect. The bacterial strain P4 also exhibited remarkable algicidal efficacy on four other dinoflagellate species, particularly the armored species. These results provide valuable insights into the algicidal effect of M. dokdonensis on K. mikimotoi and on their interactions.  相似文献   

20.
Jukka Särkkä 《Hydrobiologia》1989,180(1):185-190
Oligochaetes were sampled using meiobenthos methods from depths of between 20 and 94 m in Lake Päijänne in 1986. Individuals belonging to several species of the Naididae and Aeolosomatidae, which are generally considered to include mainly littoral or lotic species, were found more or less regularly at these profundal depths. The naidid species Chaetogaster langi and Amphichaeta leydigii were more abundant in the deepest areas than at 20 m. Species also appeared to react differently to water quality. The naidid species Chaetogaster langi and the aeolosomatid species Aeolosoma quaternarium, A. hemprichi and Rheomorpha neiswestnovae were most abundant on average at oligotrophic, unpolluted stations, naidid species Amphichaeta leydigii, Specaria josinae and Vejdovskyella comata were more abundant at eutrophicated stations and Dero digitata was more abundant in organically loaded areas. The observations of Amphichaeta leydigii, Chaetogaster setosus and Rheomorpha neiswestnovae were new for Finland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号