首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two-dimensional polyacrylamide gel electrophoresis of membrane proteins   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is one of the most powerful separation techniques for complex protein solutions. The proteins are first separated according to their isoelectric point, driven by an electric field across a pH gradient. The pH gradient necessary for the separation according to isoelectric point (pL) is usually established by electrophoresing carrier ampholytes prior to and/or concomitantly with the sample. The second dimension is usually a separation according to molecular size. Mostly this separation is performed after complete denaturation of the proteins by sodium dodecyl sulfate and 2-mercaptoethanol (SDS-PAGE). This standard method has considerable disadvantages when relatively hydrophobic membrane proteins are to be separated: cathodic drift, resulting in nonreproducible separation, and the denaturation of the protein, mostly making it impossible to detect native properties of the proteins after separation (e.g., enzymatic activity, antigenicity, intact multimers, and so on). The protocols presented here take care of most of these obstacles. However, there is probably no universal procedure that can guarantee success at first try for any mixture of membrane proteins; some experimentation will be necessary for optimization. Two procedures are each presented: a denaturing (with urea) and a nondenaturing method for IEF in immobilized pH gradient gels using Immobilines, and a denaturing (with SDS and 2-mercaptoethanol) and a nondenaturing technique (with CHAPS) for the second dimension. Essential tips and tricks are presented to keep frustrations of the newcomer at a low level.  相似文献   

3.
Gel electrophoresis is the standard method to separate, identify and purify nucleic acids. SSCP detects single base changes by altered mobility of single-stranded segments electrophoresed through non-denaturing polyacrylamide gels. Herein, changes in electrophoretic mobilities due to single base substitutions were measured for single-stranded segments of lengths ranging from 333 to 547 nt. A 484 nt segment in exon H of the human factor IX gene was studied most intensively. After SSCP, mobilities were determined by scanning autoradiograms at very high resolution (1200 d.p.i.), which allowed precise measurement of mobilities. When the mobilities of 46 single base substitutions were characterized, the distribution of mutant segments relative to a wild-type control was found to be discrete, i.e. the observed mobility values occurred in distinct ranges. Discrete mobility distributions were seen at different electrophoretic temperatures, buffer concentrations, segment lengths and segment sequences. In addition: (i) single base substitutions caused discontinuous distributions between highly dispersed and sharp bands; (ii) at least one single-stranded segment produced two sharp bands of similar intensity. These observations suggest that: (i) the single base changes in DNA segments in the size range 333–547 nt result in discrete conformational changes; (ii) individual DNA molecules of the same DNA segment can occasionally adopt two or more discrete conformations.  相似文献   

4.
Solubilization of membrane proteins for two-dimensional electrophoresis (2DE) is very difficult. In this study, we report the use of 1,2-diheptanoyl-sn-glycero-3-phosphatdiyl choline (DHPC) as a detergent to solubilize integral membrane proteins for 2DE. Rat ventricular microsomal fractions enriched with sarco(endo)plasmic reticulum (SR) membrane proteins were used as a model system. Compatibility of DHPC with a high concentration of urea increases the solubility of proteins compared with sulphobetaines or ASB-14. Peptide mass analysis assisted in the identification of key SR membrane proteins including SR Ca(2+) ATPase and other membrane proteins, which have not previously been reported on 2DE. These results suggest that DHPC is a better detergent for solubilizing membrane proteins and may be useful in generating proteomic maps for most complex organelles including SR.  相似文献   

5.
In order to separate hydrophobic membrane proteins, we have developed a novel two-dimensional electrophoresis system. For the iso-electric focusing, agarose was used as a supporting matrix and n-dodecyl-beta-D-maltopyranoside was used as a surfactant. In combination with a previously developed Tris/MES electrophoresis system in the second dimension, distinct spots were reproducibly detected from hydrophobic membrane proteins whose grand average hydropathicity (GRAVY) exceed 0.3. In contrast to the immobilized pH gradient system, c-type heme was also visualized in this system.  相似文献   

6.
Membrane proteins were resolved in two dimensions by a novel technique that uses discontinuous electrophoresis in both directions. After electrophoresis in the first direction in chloral hydrate, the membrane proteins were further resolved by a novel system that used organic-base dodecyl sulphates to stack and then resolve them. This latter system has several advantages over conventional electrophoresis in sodium dodecyl sulphate, notably that it avoids the production of artifacts generated by other systems.  相似文献   

7.
Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN‐) and high resolution clear native (hrCN‐) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine‐ and deoxycholate‐based native (HDN‐) PAGE. We compared the capacity of HDN‐, BN‐ and hrCN‐PAGE to resolve the well‐studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN‐PAGE. The analysis of isolated chloroplast envelope complexes by HDN‐PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN‐PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.  相似文献   

8.
A plasma membrane-enriched fraction prepared from barley roots was analyzed by two-dimensional gel electrophoresis. Four methods of sample solubilization were assessed on silver stained gels. When membranes were solubilized with 2% sodium dodecyl sulfate followed by addition of Nonidet P-40, gels had high background staining and few proteins because of incomplete solubilization. Gels of membranes solubilized in urea and Nonidet P-40 had a greater number of proteins but proteins with molecular weights greater than 85,000 were absent and proteins with low molecular weights were diffuse. High molecular weight proteins were present in gels of membranes solubilized in 4% sodium dodecyl sulfate followed by acetone precipitation but background staining and streaking remained a problem. Gels of the best quality were obtained when membrane proteins were extracted with phenol and precipitated with ammonium acetate in methanol; background staining and streaking were diminished and proteins were clearly resolved. This method makes possible the resolution required for meaningful qualitative and quantitative comparisons of protein patterns on two-dimensional gels of plant membrane proteins.  相似文献   

9.
10.
Polyacrylamide gradient gel electrophoresis was carried out in micellar solutions of various detergents which differ in degree of potency to denature proteins. From the application of this method to band 3 protein from erythrocyte membranes, it was suggested that the procedure was useful in studying the molecular state of membrane proteins.The electrophoretic behaviors of human and bovine band 3 protein did not show any species specificity in either a denature state and a state resembling the native state. As well as in nonionic detergent solutions, the dimeric and tetrameric structures of bovine band 3 protein were preserved in sodium deoxycholate solution, in which protein complexes maintained in nonionic detergent solutions are frequently dissociated. Even in dodecyltrimethylammonium bromide solution, which is a denaturant for water-soluble proteins, part of the band 3 protein was still present as the oligomer. The results suggest that the oligomeric form of band 3 protein is the stable structure and that the dimer and tetramer possibly coexist in membranes.  相似文献   

11.
Under the conditions described in this report, it was found that the occurrence of phospholipids in membrane samples has no artifactual impact on the subsequent separation and visualization of membrane proteins in SDS-polyacrylamide gels stained with Coomassie Blue.  相似文献   

12.
A new separation method of human erythrocyte membrane proteins by sodium dodecyl sulfate capillary gel electrophoresis (SDS–CGE) is described. In this method, a replaceable gel matrix was used. Seven major erythrocyte membrane proteins, α-and β-spectrin, ankyrin 2.1, band 3 (anion-exchanger), 4.1a and b, and 4.2 (pallidin), were separated and identified by SDS–CGE method. High reproducible migration times of these proteins (inter-assay coefficients of variation less than 2%), as well as quantification (inter-assay coefficients of variation less than 11%) were obtained. This new SDS–CGE method may provide important diagnostic evidence for hereditary spherocytosis. It can be a powerful diagnostic tool in place of SDS polyacrylamide gel electrophoresis for erythrocyte membrane protein analysis.  相似文献   

13.
After separation by microscale non-denaturing two-dimensional gel electrophoresis (2DE) and transferring to a blotting membrane, major proteins are detected by a staining of direct blue 71 in a neutral solution. The carboxylesterase on the membrane hydrolyzes phosphatidylcholine after the spot of carboxylesterase is excised from the membrane, and incubated with phosphatidylcholine. Lipids of human serum proteins and the purified human high density lipoprotein (HDL) are removed by enzymatic hydrolysis when human serum proteins and the purified HDL are respectively incubated with the spot of carboxylesterase on the membrane. These results indicate that carboxylesterase on the membrane hydrolyzes not only lipids such as phosphatidylcholine but also lipids of lipoproteins such as HDL after separation by the 2DE, transferring to the membrane and staining without impairing the activity. These results also indicate that a micro-immobilized enzyme reactor on the membrane can be produced when biological enzymes are separated by microscale 2DE, transferred to the membrane and stained without impairing their activities.  相似文献   

14.
Three different two-dimensional (2-D) gel electrophoretic techniques have been modified to provide high resolution of human erythrocyte membrane proteins. The resulting gels were referenced to the established one-dimensional (1-D) sodium dodecylsulfate (SDS) gel electrophoretic profile, and the effects of endogenous proteolysis and cytosolic contamination were studied. It is concluded that in vitro proteolysis and cytosolic contamination do not contribute significantly to the patterns observed on the 2-D gels, under the conditions used for erythrocyte ghost preparation. The procedures require only small quantities of blood; as many as twenty 2-D gel profiles can be obtained from 5 ml of blood. The combination of nonequilibrium isoelectric focusing (IEF) in the first dimension, SDS electrophoresis in the second dimension, and very sensitive silver staining techniques resolves more than 250 individual protein spots. This appears to be the most useful single procedure for the analysis of red cell membrane proteins. Membrane protein profiles from patients with Duchenne muscular dystrophy, Wernicke-Korsakoff syndrome, and acanthocytosis with degeneration of the basal ganglia were compared with normal controls. The patterns for Duchenne muscular dystrophy and Wernicke-Korsakoff syndrome were not different from normal patterns. The pattern for the patient with acanthocytosis and degeneration of the basal ganglia consistently showed a high level for one protein in the 100,000 mol. wt. range.  相似文献   

15.
16.
In this work, we present a home-made two-dimensional (2-D) CCD imaging system for the monochromatic densitometry of plane gels and its application to the imaging and densitometry of chlorophyll (Chl)-containing proteins separated by non-denaturing polyacrylamide gel electrophoresis. The monochromatic imaging of separated green bands at the wavelengths corresponding to their absorption band increases their contrast. This allows a better visualization of the faint-green bands in the gel and using of samples with lower Chl content for the electrophoresis. By the comparison of 2-D densitograms of the same gel illuminated with 670 and 650 nm lights, that is, at the red absorption maximum of Chl a and b, respectively, we achieved a selective imaging of the complexes with different Chl a/b ratio. This approach was used to specify an unknown band that appeared in the gel of the sample prepared from the thylakoid membranes of preheated barley leaves.  相似文献   

17.
The suitability of Deriphat-polyacrylamide gel electrophoresis as a method for separating purple bacterial pigment-protein complexes has been tested. When appropriate non-denaturing detergents are used to solubilize chromatophores, this method provides a rapid, easy and microscale procedure for analyzing the composition of the bacterial photosynthetic apparatus with minimal disruption of individual pigment-proteins. Its usefulness is further illustrated by employing it to test for suitable detergents with which to solubilize purple bacterial chromatophores, and as an assay to study variation in the composition of the photosynthetic unit of bacterial cultures grown under different conditions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号