首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   

4.
Pathogen infection is typically costly to hosts, resulting in reduced fitness. However, pathogen exposure may also come at a cost even if the host does not become infected. These fitness reductions, referred to as “resistance costs”, are inducible physiological costs expressed as a result of a trade‐off between resistance to a pathogen and aspects of host fitness (e.g., reproduction). Here, we examine resistance and infection costs of a generalist fungal pathogen (Metschnikowia bicuspidata) capable of infecting a number of host species. Costs were quantified as reductions in host lifespan, total reproduction, and mean clutch size as a function of pathogen exposure (resistance cost) or infection (infection cost). We provide empirical support for infection costs and modest support for resistance costs for five Daphnia host species. Specifically, only one host species examined incurred a significant cost of resistance. This species was the least susceptible to infection, suggesting the possibility that host susceptibility to infection is associated with the detectability and size of resistance cost. Host age at the time of pathogen exposure did not influence the magnitude of resistance or infection cost. Lastly, resistant hosts had fitness values intermediate between unexposed control hosts and infected hosts. Although not statistically significant, this could suggest that pathogen exposure does come at some marginal cost. Taken together, our findings suggest that infection is costly, resistance costs may simply be difficult to detect, and the magnitude of resistance cost may vary among host species as a result of host life history or susceptibility.  相似文献   

5.
Botrytis cinerea is a non-specific necrotrophic pathogen that attacks more than 200 plant species. In contrast to biotrophs, the necrotrophs obtain their nutrients by first killing the host cells. Many studies have shown that infection of plants by necrosis-causing pathogens induces a systemic acquired resistance (SAR), which provides protection against successive infections by a range of pathogenic organisms. We analyzed the role of SAR in B. cinerea infection of Arabidopsis. We show that although B. cinerea induced necrotic lesions and camalexin biosynthesis, it did not induce SAR-mediated protection against virulent strains of Pseudomonas syringae, or against subsequent B. cinerea infections. Induction of SAR with avirulent P. syringae or by chemical treatment with salicylic acid (SA) or benzothiadiazole also failed to inhibit B. cinerea growth, although removal of basal SA accumulation by expression of a bacterial salicylate hydroxylase (NahG) gene or by infiltration of 2-aminoindan-2-phosphonic acid, an inhibitor of phenylpropanoid pathway, increased B. cinerea disease symptoms. In addition, we show that B. cinerea induced expression of genes associated with SAR, general stress and ethylene/jasmonate-mediated defense pathways. Thus, B. cinerea does not induce SAR nor is it affected by SAR, making it a rare example of a necrogenic pathogen that does not cause SAR.  相似文献   

6.
7.
Botrytis cinerea is the causative agent of grey mould on over 1000 plant species and annually causes enormous economic losses worldwide. However, the fungal factors that mediate pathogenesis of the pathogen remain largely unknown. Here, we demonstrate that a novel B. cinerea-specific pathogenicity-associated factor BcHBF1 (h yphal b ranching-related f actor 1), identified from virulence-attenuated mutant M8008 from a B. cinerea T-DNA insertion mutant library, plays an important role in hyphal branching, infection structure formation, sclerotial formation and full virulence of the pathogen. Deletion of BcHBF1 in B. cinerea did not impair radial growth of mycelia, conidiation, conidial germination, osmotic- and oxidative-stress adaptation, as well as cell wall integrity of the ∆Bchbf1 mutant strains. However, loss of BcHBF1 impaired the capability of hyphal branching, appressorium and infection cushion formation, appressorium host penetration and virulence of the pathogen. Moreover, disruption of BcHBF1 altered conidial morphology and dramatically impaired sclerotial formation of the mutant strains. Complementation of BcHBF1 completely rescued all the phenotypic defects of the ∆Bchbf1 mutants. During young hyphal branching, host penetration and early invasive growth of the pathogen, BcHBF1 expression was up-regulated, suggesting that BcHBF1 is required for these processes. Our findings provide novel insights into the fungal factor mediating pathogenesis of the grey mould fungus via regulation of its infection structure formation, host penetration and invasive hyphal branching and growth.  相似文献   

8.
The host plant is often the main variable explaining population structure in fungal plant pathogens, because specialization contributes to reduce gene flow between populations associated with different hosts. Previous population genetic analysis revealed that French populations of the grey mould pathogen Botrytis cinerea were structured by hosts tomato and grapevine, suggesting host specialization in this highly polyphagous pathogen. However, these findings raised questions about the magnitude of this specialization and the possibility of specialization to other hosts. Here we report specialization of B. cinerea populations to tomato and grapevine hosts but not to other tested plants. Population genetic analysis revealed two pathogen clusters associated with tomato and grapevine, while the other clusters co-occurred on hydrangea, strawberry and bramble. Measurements of quantitative pathogenicity were consistent with host specialization of populations found on tomato, and to a lesser extent, populations found on grapevine. Pathogen populations from hydrangea and strawberry appeared to be generalist, while populations from bramble may be weakly specialized. Our results suggest that the polyphagous B. cinerea is more accurately described as a collection of generalist and specialist individuals in populations. This work opens new perspectives for grey mould management, while suggesting spatial optimization of crop organization within agricultural landscapes.  相似文献   

9.
10.
Functional analysis of an extracellular catalase of Botrytis cinerea   总被引:3,自引:0,他引:3  
There is evidence that the necrotrophic fungal pathogen Botrytis cinerea is exposed to oxidative processes within plant tissues. The pathogen itself also generates active oxygen species and H2O2 as pathogenicity factors. Our aim was to study how the pathogen may defend itself against cellular damage caused by the accumulation of H2O2 and the role of an extracellular catalase in its detoxification during the infection of tomato and bean plants by B. cinerea. Chloronaphthol staining followed by light microscopy showed that H2O2 accumulates in the infection zone in tomato and bean leaves. An extracellular catalase gene (denominated Bccat2) was cloned from B. cinerea. Exposure of mycelium to H2O2 in liquid culture resulted in increased Bccat2 mRNA levels in a concentration-dependent manner. Bccat2 mRNA was detected at early stages of tomato leaf infection, suggesting that B. cinerea experiences oxidative stress. Bccat2-deficient mutants were generated by transformation-mediated gene disruption. Mutants were more sensitive then the wild-type strain to H2O2in vitro, but they partly compensated for the absence of BcCAT2 by activating other protective mechanisms in the presence of H2O2. Bccat2-deficient mutants did not display a consistent reduction of virulence on bean and tomato leaves. Cerium chloride staining of infected leaf tissue for ultrastructural studies showed that Bccat2-deficient mutants were exposed to H2O2 comparably to the wild-type. The results suggest that B. cinerea is a robust pathogen adapted to growing in hostile oxidizing environments in host tissues.  相似文献   

11.
Polygalacturonase-inhibiting proteins (PGIPs) selectively inhibit polygalacturonases (PGs) secreted by invading plant pathogenic fungi. PGIPs display differential inhibition towards PGs from different fungi, also towards different isoforms of PGs originating from a specific pathogen. Recently, a PGIP-encoding gene from Vitis vinifera (Vvpgip1) was isolated and characterised. PGIP purified from grapevine was shown to inhibit crude polygalacturonase extracts from Botrytis cinerea, but this inhibitory activity has not yet been linked conclusively to the activity of the Vvpgip1 gene product. Here we use a transgenic over-expression approach to show that the PGIP encoded by the Vvpgip1 gene is active against PGs of B. cinerea and that over-expression of this gene in transgenic tobacco confers a reduced susceptibility to infection by this pathogen. A calculated reduction in disease susceptibility of 47–69% was observed for a homogeneous group of transgenic lines that was statistically clearly separated from untransformed control plants following infection with Botrytis over a 15-day-period. VvPGIP1 was subsequently purified from transgenic tobacco and used to study the specific inhibition profile of individual PGs from Botrytis and Aspergillus. The heterologously expressed and purified VvPGIP1 selectively inhibited PGs from both A. niger and B.␣cinerea, including BcPG1, a PG from B. cinerea that has previously been shown to be essential for virulence and symptom development. Altogether our data confirm the antifungal nature of the VvPGIP1, and the in vitro inhibition data suggest at least in part, that the VvPGIP1 contributed to the observed reduction in disease symptoms by inhibiting the macerating action of certain Botrytis PGs in planta. The ability to correlate inhibition profiles to individual PGs provides a more comprehensive analysis of PGIPs as antifungal genes with biotechnological potential, and adds to our understanding of the importance of PGIP:PG interactions during disease and symptom development in plants.Dirk A. Joubert and Ana R. Slaughter contributed equally to this work.  相似文献   

12.
13.
Genotype‐by‐genotype (G×G) interactions are an essential requirement for the coevolution of hosts and parasites, but have only been documented in a small number of animal model systems. G×G effects arise from interactions between host and pathogen genotypes, such that some pathogen strains are more infectious in certain hosts and some hosts are more susceptible to certain pathogen strains. We tested for G×G interactions in the gypsy moth (Lymantria dispar) and its baculovirus. We infected 21 full‐sib families of gypsy moths with each of 16 isolates of baculovirus and measured the between‐isolate correlations of infection rate across host families for all pairwise combinations of isolates. Mean infectiousness varied among isolates and disease susceptibility varied among host families. Between‐isolate correlations of infection rate were generally less than one, indicating nonadditive effects of host and pathogen type consistent with G×G interactions. Our results support the presence of G×G effects in the gypsy moth–baculovirus interaction and provide empirical evidence that correlations in infection rates between field‐collected isolates are consistent with values that mathematical models have previously shown to increase the likelihood of pathogen polymorphism.  相似文献   

14.
15.
16.
Conventional wisdom holds that parasites evolve more rapidly than their hosts and are therefore locally adapted, that is, better at exploiting sympatric than allopatric hosts. We studied local adaptation in the insect-transmitted fungal pathogen Microbotryum violaceum and its host plant Silene latifolia. Infection success was tested in sympatric (local) and allopatric (foreign) combinations of pathogen and host from 14 natural populations from a metapopulation. Seedlings from up to 10 seed families from each population were exposed to sporidial suspensions from each of four fungal strains derived from the same population, from a near-by population (< 10 km distance), and from two populations at an intermediate (< 30 km) and remote (< 170 km) distance, respectively. We obtained significant pathogen X plant interactions in infection success (proportion of diseased plants) at both fungal population and strain level. There was an overall pattern of local maladaptation of this pathogen: average fungal infection success was significantly lower on sympatric hosts (mean proportion of diseased plants = 0.32 ± 0.03 SE) than on allopatric hosts (0.40 ± 0.02). Five of the 14 fungal populations showed no strong reduction in infection success on sympatric hosts, and three even tended to perform better on sympatric hosts. This pattern is consistent with models of time-lagged cycles predicting patterns of local adaptation in host-parasite systems to emerge only on average. Several factors may restrict the evolutionary potential of this pathogen relative to that of its host. First, a predominantly selfing breeding system may limit its ability to generate new virulence types by sexual recombination, whereas the obligately outcrossing host 5. latifolia may profit from rearrangement of resistance alleles by random mating. Second, populations often harbor only a few infected individuals, so virulence variation may be further reduced by drift. Third, migration rates among host plant populations are much higher than among pathogen populations, possibly because pollinators prefer healthy over diseased plants. Migration among partly isolated populations may therefore introduce novel host plant resistance variants more often than novel parasite virulence variants. That migration contributes to the coevolutionary dynamics in this system is supported by the geographic pattern of infectivity. Infection success increased over the first 10–km range of host-pathogen population distances, which is likely the natural range of gene exchange.  相似文献   

17.
Every host is colonized by a variety of microbes, some of which can protect their hosts from pathogen infection. However, pathogen presence naturally varies over time in nature, such as in the case of seasonal epidemics. We experimentally coevolved populations of Caenorhabditis elegans worm hosts with bacteria possessing protective traits (Enterococcus faecalis), in treatments varying the infection frequency with pathogenic Staphylococcus aureus every host generation, alternating host generations, every fifth host generation, or never. We additionally investigated the effect of initial pathogen presence at the formation of the defensive symbiosis. Our results show that enhanced microbe‐mediated protection evolved during host‐protective microbe coevolution when faced with rare infections by a pathogen. Initial pathogen presence had no effect on the evolutionary outcome of microbe‐mediated protection. We also found that protection was only effective at preventing mortality during the time of pathogen infection. Overall, our results suggest that resident microbes can be a form of transgenerational immunity against rare pathogen infection.  相似文献   

18.
Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora semeniperda. We measured potential host range in laboratory experiments at high inoculum loads with 26 grass species, including the primary host Bromus tectorum, and developed models to predict susceptibility and tolerance based on host traits, including germination speed, seed hardness, seed size, and phylogenetic relations. We also examined pathogen and host density effects on infection and mortality. All species tested were at least somewhat susceptible to the pathogen at high inoculum loads, but both infection and mortality varied widely. Species more closely related to the original host (B. tectorum) were more susceptible to infection, whereas species with slower germination were less tolerant and therefore more likely to suffer mortality. Infection and mortality were sharply reduced as inoculum load was reduced. Intermediate loads had major negative impacts on dormant B. tectorum seeds but generally minimal effects on native species. In addition, field seed bank studies determined that P. semeniperda rarely exploits native grass species as hosts. This marked reduction in realized host range relative to potential host range indicates that laboratory host range studies are potentially a poor predictor of either the current or possible future realized host range for wildland plant pathogens.  相似文献   

19.
Cultivated tomato (Solanum lycopersicum, syn. Lycopersicon esculentum) is susceptible to the necrotrophic ascomycete and causal agent of gray mold, Botrytis cinerea. Resistance to this fungal pathogen is elevated in wild relatives of tomato, including Solanum lycopersicoides. An introgression line population (IL) containing chromosomal segments of S. lycopersicoides within the background of tomato cv. VF36 was used to screen the genome for foliar resistance and susceptibility to B. cinerea. Based on this screen, putative quantitative trait loci (QTL) were identified, five for resistance and two for susceptibility. Four resistance QTL decreased infection frequency while the fifth reduced lesion diameter. One susceptibility QTL increased infection frequency whereas the other increased lesion diameter. Overlapping chromosomal segments provided strong evidence for partial resistance on chromosomes 1 and 9 and for elevated susceptibility on chromosome 11. Segregation analysis confirmed the major resistance QTL on the long arm of chromosome 1 and susceptibility on chromosome 11. Linkage of partial resistance to chromosome 9 could not be confirmed. The usefulness of these data for resistance breeding and for map-based cloning of foliar resistance to B. cinerea is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号