首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

3.
Two new crystal protein genes, cry19A and orf2, isolated from Bacillus thuringiensis subsp. jegathesan were cloned and characterized. The cry19A gene encodes a 74.7-kDa protein, and the orf2 gene encodes a 60-kDa protein. Cry19A contains the five conserved blocks present in most B. thuringiensis delta-endotoxins. The ORF2 amino acid sequence is similar to that of the carboxy terminus of Cry4 proteins. The cry 19A gene was expressed independently or in combination with orf2 in a crystal-negative B. thuringiensis host. The proteins accumulated as inclusions. Purified inclusions containing either Cry19A alone or Cry19A and ORF2 together were toxic to Anopheles stephensi and Culex pipiens mosquito larvae. They were more toxic to C. pipiens than to A. stephensi. However, inclusions containing Cry19A and ORF2 together were more toxic than inclusions of Cry19A alone but less toxic than the wild-type inclusions of B. thuringiensis subsp. jegathesan.  相似文献   

4.
Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.  相似文献   

5.
H K Lee  S S Gill 《Applied microbiology》1997,63(12):4664-4670
A novel mosquitocidal protein gene, cry20Aa, was cloned from Bacillus thuringiensis subsp. fukuokaensis (H-3a: 3d: 3e). The gene product, Cry20Aa, was naturally truncated and had a molecular mass of 86,138 Da. The Cry20Aa protein possessed five conserved sequence blocks, as do most other insecticidal Cry toxins. However, an amino acid comparison of Cry20Aa with other mosquitocidal toxins, including Cry4A, Cry4B, Cry10A, Cry11A, and Cry11B, demonstrated that Cry20Aa was quite different from other toxins except for the conserved blocks. The N terminus of Cry20Aa was, however, homologous to the N termini of Cry4A and Cry10A. Interestingly, an inverted repeat (IR1) sequence in the open reading frame of the cry20Aa gene caused incomplete expression of Cry20Aa. When this internal IR1 sequence was altered with no change of amino acid sequence, acrystalliferous B. thuringiensis cells transformed with cry20Aa gene dramatically produced crystal inclusions. However, the intact 86-kDa Cry20Aa protein is highly labile, and it is rapidly degraded to polypeptides of 56 and 43 kDa. To increase expression of the cry20Aa gene, the p20 chaperonelike protein and the cyt1Aa promoter were utilized. While p20 did not increase Cry20Aa expression or stability, chimeric constructs in which the cry20Aa gene was under control of the cyt1Aa promoter overexpressed the Cry20Aa protein in acrystalliferous B. thuringiensis. The expressed Cry20Aa protein showed larvicidal activity against Aedes aegypti and Culex quinquefasciatus. However, the mosquitocidal activity was low, probably due to rapid proteolysis to inactive 56- and 43-kDa proteins.  相似文献   

6.
Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.  相似文献   

7.
A Aronson 《Applied microbiology》1995,61(11):4057-4060
Most Bacillus thuringiensis strains producing toxins active on lepidoptera contain several plasmid-encoded delta-endotoxin genes and package related protoxins into a single inclusion. It was previously found that in B. thuringiensis subsp. aizawai HD133, which produces an inclusion comprising the CryIAb, CryIC, and CryID protoxins, there is a spontaneous loss in about 1% of the cells of a 45-mDa plasmid containing the cryIAb gene. As a result, inclusions produced by the cured strain were less readily solubilized at pH 9.2 or 9.5 and had a decreased toxicity for Plodia interpunctella, despite the presence of the CryIC protoxin, which was active when solubilized. These results suggested that protoxin composition was a factor in inclusion solubility and toxicity and that the cryIAb gene, which is also present on an unstable plasmid in several other subspecies, may have a unique role in inclusion solubility and toxicity. Introduction of a cloned copy of this gene into the plasmid-cured derivative of B. thuringiensis subsp. aizawai HD133 resulted in an increase in the solubility at pH 9.2 of all of the inclusion proteins from less than 20% to greater than 45% and a lowering of the 50% lethal concentration (LC50, in micrograms [dry weight] per square centimeter) of inclusions for Spodoptera frugiperda from 35 to 10. These values are the same as those found with inclusions from B. thuringiensis subsp. aizawai HD133, and in all cases, the LC50 of the solubilized protoxins was 10. Transformants containing related cryIA genes produced inclusions which were more than 95% solubilized at pH 9.2 but also had LC50 of 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A novel cry2Ab gene was cloned and sequenced from the indigenous isolate of Bacillus thuringiensis subsp. kurstaki. This gene was designated as cry2Ab25 and its sequence revealed an open reading frame of 1,902 bp encoding a 633 aa protein with calculated molecular mass of 70 kDa and pI value of 8.98. The amino acid sequence of the Cry2Ab25 protein was compared with previously known Cry2Ab toxins, and the phylogenetic relationships among them were determined. The deduced amino acid sequence of the Cry2Ab25 protein showed 99% homology to the known Cry2Ab proteins, except for Cry2Ab10 and Cry2Ab12 with 97% homology, and a variation in one amino acid residue in comparison with all known Cry2Ab proteins. The cry2Ab25 gene was expressed in Escherichia coli BL21(DE3) cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Cry2Ab25 protein is about 70 kDa. The toxin expressed in BL21(DE3) exhibited high toxicity against Malacosoma neustria and Rhagoletis cerasi with 73% and 75% mortality after 5 days of treatment, respectively.  相似文献   

9.
We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.  相似文献   

10.
A Delcluse  M L Rosso    A Ragni 《Applied microbiology》1995,61(12):4230-4235
A gene, designated cry11B, encoding a 81,293-Da crystal protein of Bacillus thuringiensis subsp. jegathesan was cloned by using a gene-specific oligonucleotide probe. The sequence of the Cry11B protein, as deduced from the sequence of the cry11B gene, contains large regions of similarity with the Cry11A toxin (previously CryIVD) from B. thuringiensis subsp. israelensis. The Cry11B protein was immunologically related to both Cry11A and Cry4A proteins. The cry11B gene was expressed in a nontoxic strain of B. thuringiensis, in which Cry11B was produced in large amounts during sporulation and accumulated as inclusions. Purified Cry11B inclusions were highly toxic for mosquito larvae of the species Aedes aegypti, Culex pipiens, and Anopheles stephensi. The activity of Cry11B toxin was higher than that of Cry11A and similar to that of the native crystals from B. thuringiensis subsp. jegathesan, which contain at least seven polypeptides.  相似文献   

11.
A new Bacillus thuringiensis strain belonging to the serovar aizawai was isolated from a dead larva of the lepidopteran Mythimna loreyi collected in a corn crop in Spain during a natural epizootic. This strain, which was named Leapi01, was compared with the kurstaki and aizawai strains isolated from Dipel(R) and Xentari(R), by electron microscopy, SDS-PAGE, plasmid pattern, PCR and insecticidal activity. This strain showed similar morphological and biochemical characteristics to the standard strains. The content in cry genes of Leapi01 was analysed with a set of general and specific primers recognizing most of the cry genes reported to date. DNA amplification was obtained with primers corresponding to six genes and, to clearly determine the identity of the genes, the amplified fragments were sequenced and corresponded to cry1Aa, cry1Ab, cry1Ca, cry1Da, cry2Ab and cry1Ia. However, the proteins encoded by two of these genes, Cry2 and Cry1I, were not detected in the SDS-PAGE of the purified parasporal bodies. The insecticidal activity of Leapi01 was determined by bioassays against two Lepidoptera species, Helicoverpa armigera and Spodoptera littoralis, that were found to be very susceptible to Leapi01 purified crystals. Since two of the cry genes identified in Leapi01 appear to be silent, other factors may be involved in the toxicity of the strain. As a result of this study, the potential of Leapi01 as biological control agent is discussed, with special emphasis on the high toxicity and relatively broad spectrum activity compared with two B. thuringiensis strains that are the active ingredients of commercial preparations commonly used as bioinsecticides.  相似文献   

12.
Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.  相似文献   

13.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

14.
Bacillus thuringiensis Cry1AbMod toxins are engineered versions of Cry1Ab that lack the amino-terminal end, including domain I helix α-1 and part of helix α-2. This deletion improves oligomerization of these toxins in solution in the absence of cadherin receptor and counters resistance to Cry1A toxins in different lepidopteran insects, suggesting that oligomerization plays a major role in their toxicity. However, Cry1AbMod toxins are toxic to Escherichia coli cells, since the cry1A promoter that drives its expression in B. thuringiensis has readthrough expression activity in E. coli, making difficult the construction of these CryMod toxins. In this work, we show that Cry1AbMod and Cry1AcMod toxins can be cloned efficiently under regulation of the cry3A promoter region to drive its expression in B. thuringiensis without expression in E. coli cells. However, p3A-Cry1Ab(c)Mod construction promotes the formation of Cry1AMod crystals in B. thuringiensis cells that were not soluble at pH 10.5 and showed no toxicity to Plutella xylostella larvae. Cysteine residues in the protoxin carboxyl-terminal end of Cry1A toxins have been shown to be involved in disulfide bond formation, which is important for crystallization. Six individual cysteine substitutions for serine residues were constructed in the carboxyl-terminal protoxin end of the p3A-Cry1AbMod construct and one in the carboxyl-terminal protoxin end of p3A-Cry1AcMod. Interestingly, p3A-Cry1AbMod C654S and C729S and p3A-Cry1AcMod C730S recover crystal solubility at pH 10.5 and toxicity to P. xylostella. These results show that combining the cry3A promoter expression system with single cysteine mutations is a useful system for efficient expression of Cry1AMod toxins in B. thuringiensis.  相似文献   

15.
A cry1Ab-type gene was cloned from a new isolate of Bacillus thuringiensis by PCR. When restriction pattern was compared with that of known genes it was found to have additional restriction site for ClaI. Nucleotide sequencing and homology search revealed that the toxin shared 95% homology with the known Cry1Ab proteins as compared to more than 98% homology among the other reported Cry1Ab toxins. The gene encoded a sequence of 1,177 amino acids compared to 1,155 amino acids encoded by all the other 16 cry1Ab genes reported so far. An additional stretch of 22 amino acids after the amino acid G793 in the new toxin sequence showed 100% homology with several other cry genes within cry1 family. Homology search indicated that the new cry1Ab-type gene might have resulted by nucleotide rearrangement between cry1Ab and cry1Aa/cry1Ac genes.  相似文献   

16.
The composition and distribution of insecticidal crystal proteins (Cry proteins) and their genotypes of Bacillus thuringiensis isolates from warehouses were evaluated through SDS-PAGE and PCR techniques. The results showed that the electrophoretic patterns of delta-endotoxin crystal preparations were divided into five types. The isolates containing approximately 135 kDa with a 65-kDa protein or only a approximately 135-kDa protein, which amounted to 55.74 and 35.25% of all isolates respectively, were the two major profiles of Cry protein isolated. The distribution of cry genes of B. thuringiensis from warehouses was highly variable. Cry protein genotypes detected in B. thuringiensis isolates included cry1Aa5, cry1Ab9, cry1Ac5, cry1Ba, cry1Ca1, cry1Da1, cry1Ea3, cry2, and cry3 genes, but not cry1Fa2. Among them, cry2, cry1Ac5, and cry1Ab9 genes were the most common in our B. thuringiensis isolates. Most B. thuringiensis isolates contained several cry genes in a total of 18 profiles. Among them, cry1Ac5 with cry1Ea3; cry1Aa5, cry1Ab9, cry1Ac5 with cry1Ea3; and cry1Aa5, cry1Ab9 with cry1Ac5 were the three principal profiles. The distribution of the Cry proteins and cry genes in isolates depended on geography and type of warehouses. Gene profiles may be used as markers for insecticidal activity of B. thuringiensis strains, but they did not directly reflect the toxic level of B. thuringiensis strains. The serotype of B. thuringiensis strains did not directly reflect the specific cry gene profiles in the strains, but certain relationships can be established between the serotype and cry genotype.  相似文献   

17.
At least three different insecticidal crystal protein genes were shown to be expressed in Bacillus thuringiensis subsp. aizawai 7.29, a strain that is potentially active against the cotton leafworm Spodoptera littoralis Bdv. Among crude K-60 fractions (60- to 70-kilodalton [kDa] molecules) that were products of proteolysed crystals containing the active domains of the protoxin molecules, we were able to distinguish several distinct components on the basis of their antigenic relationship and their larvicidal properties. A purified fraction designated SF2 was a 61-kDa component specifically active against Pieris brassicae L. and homologous to the B. thuringiensis subsp. berliner 1715 plasmid-encoded crystal protein. A second fraction designated SF1 was composed of 63- and 65-kDa polypeptides and was specifically active against S. littoralis. The SF1 fraction and particularly the 65-kDa component were not antigenically related to the 61-kDa component. The purified fractions were compared with the products of three different crystal protein genes we previously cloned from total DNA of B. thuringiensis subsp. aizawai, among them a new type of crystal protein gene encoding a protein that is specifically active against S. littoralis and other insects of the Noctuidae family. This approach led us to consider the 65-kDa component as a minimum active part of a delta-endotoxin that is encoded by this new gene. Products of the two other cloned genes can be correlated with the 61- and 63-kDa components, respectively. Thus, in B. thuringiensis subsp. aizawai 7.29, multiple delta-endotoxin genes of different structural types direct the synthesis of several delta-endotoxins with different host specificities which were identified as components of the insecticidal crystals.  相似文献   

18.
苏云金芽胞杆菌鲇泽亚种菌株HD-133含有代表性的三种cry1类基因cry1Ab,cry1C和cry1D,它们的表达量却明显不同。通过Northern杂交检测了菌株HD-133中基因cry1D和cry1Ab的mRNA含量及其稳定性。结果表明:基因cry1D mRNA的形成比基因cry1Ab的mRNA滞后3h,且基因cry1D形成mRNA的量很低,产生过程很平稳,在芽胞形成中期比cry1Ab mRNA低3.7倍;cry1Ab mRNA含量在芽胞形成前期高于后期,在后期仍能大量持续稳定地转录。cry1D mRNA的半衰期为18min,而cry1Ab mRNA的半衰期为14min。尽管cry1D mRNA比cry1Ab mRNA的半衰期更长,但cry1D和cry1Ab转录时间和转录量的差异是导致其表达量差异的重要原因。  相似文献   

19.
Huang Z  Guan C  Guan X 《Biotechnology letters》2004,26(20):1557-1561
A new cry 1Ab-type gene, cry 1Ab17, was cloned from Bacillus thuringiensis WB9 by PCR. Nucleotide sequence indicated that the open reading frames (ORFs) consists of 3471 bases and encodes a protein of 1156 residues with a calculated molecular weight of 130.5 kDa and an pI value of 5.04. Homology comparison revealed that the deduced amino acid sequence of Cry1Ab17 had 95.4% to 99.7% identity with those of the known Cry1Ab proteins. The Cry1Ab17 was one residue longer than the known Cry1Ab (except for Cry1Ab2). Domain I (Tyr(33) to Arg(253)), II (Arg(265) to Phe(462)), III (Asn(464) to Thr(610)) of the Cry1Ab17 were 96.8%, 68.2% and 100% identical to the corresponding domains of Cry1Aa. Additionally, the cry 1Ab17 gene was expressed in Escherichia coli BL21 under the control of T7 promoter and the Cry1Ab17 isolated from the culture medium was toxic to 3rd instar Plutella xylostella larvae.  相似文献   

20.
The nucleotide sequence of a 2711bp DNA segment which contains the N-terminal coding sequence and the 5' flanking region of a crystal protein gene (bta) from Bacillus thuringiensis subsp. aizawai 7.29 has been determined. The coding region encodes an 824 amino-acid polypeptide corresponding to a carboxy-terminally truncated delta-endotoxin specifically active against the cotton leaf worm Spodoptera littoralis. Comparison of the deduced amino acid sequence of the bta gene with that of the 4.5, 5.3 and 6.6 kb classes of lepidopteran-active delta-endotoxins revealed that the Bta sequence contains a very high level of amino acid substitutions in the N-terminal part of the protoxin molecule. The substitutions are grouped in several highly variable segments separated by highly conserved regions. These conserved domains are also present in the dipteran- and coleopteran-active delta-endotoxins. The control region of the bta gene shows considerable DNA identity with the control regions of the other lepidopteran-active genes. Deletions of the 3' region of the gene were carried out and the toxic fraction of the bta delta-endotoxin was identified with the N-terminal half of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号