首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张银运  刘武 《人类学学报》2007,26(3):237-248
KNM-ER 3733人类头骨化石的年代为距今1.78百万年,1975年发现于肯尼亚。Walker和Leakey注意到这具头骨与周口店直立人的在脑颅形态上很相近,但二者在年代上相差大约1百万年,故认为直立人形态在这1百万年期间是稳定的。长期来此观点缺乏更多的人类化石证据来支持。1993年在中国发现了南京1号人类头骨化石。该头骨与KNM-ER 3733头骨一样兼具脑颅和面颅,且都属于成年女性个体,但南京1号人类头骨化石的年代比KNM-ER 3733人类头骨化石的要晚大约1百万年。因此,南京1号人类头骨是目前所知的可用来验证直立人头骨形态是否在1百万年期间保持稳定的唯一合适的人类头骨化石材料。形态比较表明,这两个人类头骨化石的脑颅虽然在眶上圆枕上沟的发育程度、眶后收缩的程度、额骨横向隆起的程度、角圆枕和乳后突的发育与否、顶骨形状以及骨壁厚度的表现上有所差异,但有更多的形态性状显示出相近。这些相近表现在脑颅的长、宽、高值上;颅容量上;脑颅的低矮性上;脑颅最大宽之位置上;额骨、顶骨、枕骨之矢弧值的比例上;眶上圆枕的纤细上;顶骨的大小和矢向扁平性上;颞线位置和颞鳞顶缘的形状上;枕鳞的低宽形状上;上枕鳞与下枕鳞之间的转折形状和比例上;枕骨圆枕和枕骨圆枕上沟的发育程度上等。这两具头骨的面颅虽然有同属突颌型的面角、皆发育有鼻骨间嵴、两鼻骨组成的上部宽度与下部宽度皆差别很大,但有更多的形态性状显示出差别。这些差别表现在面型上、颜面上部扁平度上、眶形和眶型上、上颌额突外侧面的朝向上、鼻骨横向隆起程度上、鼻梁外突程度上、鼻型上、颧骨下缘外展程度上、颊高上、颧上颌下缘的形状上、上颌颧突基部的位置上以及颧结节的位置上等。因此,南京1号头骨与KNM-ER 3733头骨之间在脑颅上显示出较多的相近性状,在面颅上则显示出较多的相异性状。脑颅方面的相近性状大多具有分类上的鉴别价值。这两个头骨脑颅形态的相近支持把KNM-ER 3733头骨鉴定为"直立人"的观点;也提示了南京1号头骨的脑颅似乎保持着1百多万年前的"祖先"形态。如果直立人的某些成员在至少1百万年期间保持着形态稳定的话,则这种形态上的稳定主要是表现在脑颅形态上。这两具头骨的面颅形态上较大差异的意义,目前尚不清楚。  相似文献   

2.
We cross-sectionally investigated prenatal ontogeny of craniofacial shape in the two subspecies of the Japanese macaque (Macaca fuscata fuscata and Macaca fuscata yakui) using a geometric morphometric technique to explore the process of morphogenetic divergence leading to the adult morphological difference between the subspecies. The sample comprised a total of 32 formalin-fixed fetal specimens of the two subspecies, in approximately the second and third trimesters. Each fetal cranium was scanned using computed tomography to generate a three-dimensional surface model, and 68 landmarks were digitized on the external and internal surface of each cranium to trace the growth-related changes in craniofacial shape of the two subspecies. The results of our study demonstrated that the two subspecies generally shared the same craniofacial growth pattern. Both crania tend to exhibit relative contraction of the neurocranium in the mediolateral and superoinferior directions, a more superiorly positioned cranial base, a more vertically oriented occipital squama, and a more anteriorly positioned viscerocranium as the cranial size increased. However, distinctive subspecific differences, for example relatively narrower orbital breadth, higher orbit, higher position of the nuchal crest, and more protrudent snout found in Macaca fuscata yakui were already present during the prenatal period. This study demonstrated that morphological differentiation in the craniofacial shape may occur at a very early stage of the fetal period even between closely related subspecies of the Japanese macaque.  相似文献   

3.
In 1943, Weidenreich described the squamosal suture of Homo erectus as long, low, and simian in character and suggested that this morphology was dependent upon the correlation between the size of the calvarium and the face. Many researchers now consider this character to be diagnostic of H. erectus. The relationship between cranial size and shape and temporal squama morphology, however, is unclear, and several authors have called for detailed measurements of squamosal variation to be collected before any conclusions are drawn regarding the nature of the morphology observed in H. erectus. Thirteen fossil and extant taxa were examined to address two questions: 1) Are size and shape of the temporal squama correlated with cranial vault morphology? and 2) Is the H. erectus condition plesiomorphic? To answer these questions, measurements were collected and indices were calculated for squamosal suture height, length, and area in relation to metric variables describing cranial size and shape. A two‐dimensional morphometric study was also completed using High Resolution‐Polynomial Curve Fitting (HR‐PCF) to investigate correlations between curvature of the squamosal suture and curvature of the cranial vault. Results of both analyses indicate that squamosal suture form is related to cranial size and shape. Furthermore, the plesiomorphic condition of the squamosal suture for hominins was identified as high and moderately arched; this condition is retained in H. erectus and is distinct from the great ape condition. It is suggested that this similarity is the result of increased cranial length without a corresponding increase in cranial height. Am J Phys Anthropol, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
A detailed study of the calvarium of twelve anencephalic and four normal human fetuses 26 to 40 weeks gestational age using gross dissection, alizarin red S staining, silver nitrate radiography and histology revealed dramatic alterations in the presence, form, location and relationship of the individual bones. In the larger dorsal cranial defects the interparietal portions of the occipital bone were relocated anteriorly to approximate the frontal bone. The occipital components were rotated anterolaterally and inferiorly with lack of fusion of the chondrocranium posterior to the foramen magnum. The squamae of the frontal bone were collapsed horizontally and reduced in size to lie peripheral to the anterior cranial fossa forming most of the orbital roofs. In anencephaly the bones derived from the chondrocranium were not as severely affected morphologically as those derived from the neurocranium. The sutures were narrow and smooth instead of wide and serrated as in the normally developing calvarium. In general the degree of maldevelopment was proportional to the extent of the dorsal cranial defect in anencephaly.  相似文献   

5.
This paper presents a comprehensive comparative analysis of the Neanderthal bony labyrinth, a structure located inside the petrous temporal bone. Fifteen Neanderthal specimens are compared with a Holocene human sample, as well as with a small number of European Middle Pleistocene hominins, and early anatomically modern and European Upper Palaeolithic humans. Compared with Holocene humans the bony labyrinth of Neanderthals can be characterized by an anterior semicircular canal arc which is smaller in absolute and relative size, is relatively narrow, and shows more torsion. The posterior semicircular canal arc is smaller in absolute and relative size as well, it is more circular in shape, and is positioned more inferiorly relative to the lateral canal plane. The lateral semicircular canal arc is absolutely and relatively larger. Finally, the Neanderthal ampullar line is more vertically inclined relative to the planar orientation of the lateral canal. The European Upper Palaeolithic and early modern humans are most similar, although not fully identical to Holocene humans in labyrinthine morphology. The European Middle Pleistocene hominins show the typical semicircular canal morphology of Neanderthals, with the exception of the arc shape and inferiorly position of the posterior canal and the strongly inclined ampullar line. The marked difference between the labyrinths of Neanderthals and modern humans can be used to assess the phylogenetic affinities of fragmentary temporal bone fossils. However, this application is limited by a degree of overlap between the morphologies. The typical shape of the Neanderthal labyrinth appears to mirror aspects of the surrounding petrous pyramid, and both may follow from the phylogenetic impact of Neanderthal brain morphology moulding the shape of the posterior cranial fossa. The functionally important arc sizes of the Neanderthal semicircular canals may reflect a pattern of head movements different from that of modern humans, possibly related to aspects of locomotor behaviour and the kinematic properties of their head and neck.  相似文献   

6.
10 craniometric measurements of the skull bones' fornix have been performed on 89 dried infant skulls. The authors have shown that the craniometric variability of the skull bone's fornix is connected with the skull length rather than with its height. The skull length is determined mostly by the squama of the temporal bone and occipital squama. The shape of the skull vault is determined mainly by parietal bone and squama of the frontal bone. Parietal bones shut unpaired fontanelle, but the remaining bones, under investigation, contribute to the closure of anterolateral and postero-lateral fontanelle.  相似文献   

7.
《Journal of morphology》2017,278(10):1312-1320
Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis.  相似文献   

8.
Recent studies have demonstrated that the shape of the human temporal bone is particularly strongly correlated with neutral genetic expectation, when compared against other cranial regions, such as the vault, face, and basicranium. In turn, this has led to suggestions that the temporal bone is particularly reliable in analyses of primate phylogeny and human population history. While several reasons have been suggested to explain the temporal bone's strong fit with neutral expectation, the temporal bone has never systematically been compared against other individual cranial bones defined using the same biological criteria. Therefore, it is currently unknown whether the shapes of all cranial bones possess reliable information regarding neutral genetic evolution, or whether the temporal bone is unique in this respect. This study tests the hypothesis that the human temporal bone is more congruent with neutral expectation than six other individual cranial bones by correlating population affinity matrices generated using neutral genetic and 3D craniometric data. The results demonstrate that while the temporal bone shows the absolute strongest correlation with neutral genetic data compared with all other bones, it is not statistically differentiated from the sphenoid, frontal, and parietal bones in this regard. Potential reasons for the temporal bone's consistently strong fit with neutral expectation, such as its overall anatomical complexity and/or its contribution to the architecture of the basicranium, are examined. The results suggest that future phylogenetic and taxonomic studies would benefit from considering the shape of the entire cranium minus those regions that deviate most from neutrality. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Canonical correlation analysis was used to test an hypothesized morphological relationship between vault form and cranial capacity relative to length of the chondrocranium. Ninety-five adult male Czech skulls were measured for vault form expressed as length, width and height of the brain case; the chondrocranium was represented by nasion-basion and basion-opisthion lengths. In terms of explained variation, the first and most important dimension of covariation between vault and chondrocranial variables was size. The second most significant dimension of covariation expressed the hypothesized shape relationships—i.e., overall size being equal, the shorter the chondrocranial base relative to cranial capacity, the shorter and wider the vault. Furthermore, the competing hypothesis that vault form is determined by facial length proved untenable since facial length was predictive of vault shape only when measured as prosthion-basion, a measure that incorporates basal length. When corrected for basal length, facial length is unrelated to vault form. The results are consistent with the assumption that phylogenetic and microevolutionary trends toward brachycephaly in man stem from changes in the relationship between two components of skull growth, the chondrocranial base and the brain.  相似文献   

10.
Cranial base and jaw relationship   总被引:2,自引:0,他引:2  
The lateral skull radiographs of 124 boys aged approximately 10 years divided equally between the four angle classes were digitized in an effort to establish the relationship between cranial base size and shape and jaw relationship. Comparison of the means for occlusal groups showed a trend from class II to class III as cranial base dimensions and angle decreased. The condyle was also more distally positioned with respect to nasion, point A and the Pterygomaxillary vertical in the class II groups. Cranial base length correlated strongly with maxillary length but weakly with mandibular length. Nevertheless, the size of the maxilla did not influence its prognathism. The cranial base angle was strongly correlated (-0.7) with angle sella-nasion-point B. It is concluded that cranial base size and shape influence mandibular prognathism by determining the anteroposterior position of the condyle relative to the facial profile.  相似文献   

11.
The size and shape of the basicranium (seen in norma basilaris) in Homo, Gorilla, Pan, Pongo, and Australopithecus have been studied by recording the relative disposition of midline and bilateral bony landmarks. Fifteen linear measurements and two angles were used to relate the landmarks. The relatively longer and narrower cranial base of Gorilla, Pan, and Pongo is clearly contrasted with the wider, shorter cranial base in Homo sapiens. When the same observations were made on two “robust” and two “gracile” australopithecine crania, marked differences were found between the taxa. In the two “robust” specimens, the foramen magnum is located relatively further forward, and the axis of the petrous temporal bone is aligned more nearly with the coronal plane than in the two “gracile” crania. The implications of this apparent parallelism in basicranial morphology between Homo sapiens and the “robust” australopithecines are discussed.  相似文献   

12.
Normal development of spurs and horny squamae have been studied in histological preparations obtained from the skin of tarsometatarsus in 8--16-day-old embryos. During the first, initial stage of development, by means of rearrangement of cellular matter and cell migration, three main parts of the spur are layed down -- the horny cover, the spur body and the fibrovascular cushion. For the second stage, vigorous growth of the spur germ at the expense of proliferative activity of its cells is characteristic. At the third stage (after hatching) in males, the spur body outgrows and the bony core is formed. Morphogenesis of the horny squama can be devided into two stages. At the initial stages by means of condensing cellular elements, squamous papilla and horny shell are layed down. The fibrovascular cushion is absent. The second stage is similar to the spur one and is characterized by growth of all the germ parts at the expense of cell proliferation. Comparing morphogeneses of the squama and the spur, it is possible to conclude that phylogenetic transformation of the squama into the spur is performed by two means (modi) of phyloembryogenesis: by means of adding new signs of development to the initial terminal stages of its morphogenesis.  相似文献   

13.
This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the finds are needed to understand the evolutionary history of this endemic hominin species.  相似文献   

14.
内蒙古石拐群古鳕类一新属   总被引:2,自引:2,他引:0  
内蒙古石拐地区石拐群召沟组中的长腹鳍大青山鳕(新属、新种) Daqingshaniscus longiventralis gen. et sp. nov. 是在我国中侏罗世地层中发现的一比较原始的古鳕类.其头骨眶后部分短,鳃盖骨大于下鳃盖骨,背鳍位于腹鳍与臀鳍之间,腹鳍基线长,鳍条都从基部分节、远端分叉,棘鳞仅见于尾上叶,全歪型尾,鳞片呈菱形.大青山鳕既与苏联南哈萨克斯坦 Karatau 地区的 Pteroniscus 很接近,又与我国新疆的维吾尔鳕 Uighuroniscus 及西德北部的 Stadthagen 地区的 Indaginilepis 相似.  相似文献   

15.
In all insects investigated hitherto the mechanoreceptive hair sensilla possess the same organization plan. There are differences in the moulting process of hemimetabolous insects. While the functions of the three enveloping cells are corresponding, the position of the moulting porus is different. In Gryllus and Periplaneta the moulting porus is situated at the base of the hair, in Machilis 25 mum above the base of the hair. In Lepisma, however, the moulting porus is located at the tip of the hair shaft. Comparison of mechanoand contactchemoreceptive hair sensilla shows that the position of the moulting porus in primitive ectognathous insects represents an argument for the close morphological and phylogenetical relationship between both types of sensilla. Interpreting our results, the original position of the moulting porus is at the tip of the hair sensilla. In mechanoreceptors, where the moulting porus is located at the base of the hair, the original tip of the hair (position of the moulting porus) is overgrown at the side by a 'secondary hair process'.  相似文献   

16.
The majority of studies of frontal bone morphology in paleoanthropology have analyzed the frontal squama and the browridge as a single unit, mixing information from different functional elements. Taking into account that the bulging of the frontal bone is often described as a species‐specific trait of Homo sapiens, in this article we analyze variation in the midsagittal profile of the genus Homo, focusing on the frontal squama alone, using landmark‐based superimpositions and principal components analysis. Our results demonstrate that anatomically modern humans are definitely separated from extinct human taxa on the basis of frontal bulging. However, there is minor overlap among these groups, indicating that it is necessary to exercise caution when using this trait alone to make taxonomic inferences on individual specimens. Early modern humans do not show differences with recent modern humans, and “transitional” individuals such as Jebel Irhoud 1, Maba, and Florisbad, show modern‐like frontal squama morphology. The bulging of the frontal squama in modern humans may represent a structural consequence of more general cranial changes, or it could be a response to changes in the morphology of the underlying prefrontal brain elements. A subtle difference between Neandertals and the Afro‐European Middle Pleistocene Homo sample is associated with flattening at bregma in the former group, a result that merits further investigation. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc  相似文献   

17.
Early hominid brain evolution: a new look at old endocasts   总被引:4,自引:0,他引:4  
Early hominid brain morphology is reassessed from endocasts of Australopithecus africanus and three species of Paranthropus, and new endocast reconstructions and cranial capacities are reported for four key specimens from the Paranthropus clade. The brain morphology of Australopithecus africanus appears more human like than that of Paranthropus in terms of overall frontal and temporal lobe shape. These new data do not support the proposal that increased encephalization is a shared feature between Paranthropus and early Homo. Our findings are consistent with the hypothesis that Australopithecus africanus could have been ancestral to Homo, and have implications for assessing the tempo and mode of early hominid neurological and cognitive evolution.  相似文献   

18.
Temporal bone shape has been shown to reflect molecular phylogenetic relationships among hominoids and offers significant morphological detail for distinguishing taxa. Although it is generally accepted that temporal bone shape, like other aspects of morphology, has an underlying genetic component, the relative influence of genetic and environmental factors is unclear. To determine the impact of genetic differentiation and environmental variation on temporal bone morphology, we used three-dimensional geometric morphometric techniques to evaluate temporal bone variation in 11 modern human populations. Population differences were investigated by discriminant function analysis, and the strength of the relationships between morphology, neutral molecular distance, geographic distribution, and environmental variables were assessed by matrix correlation comparisons. Significant differences were found in temporal bone shape among all populations, and classification rates using cross-validation were relatively high. Comparisons of morphological distances to molecular distances based on short tandem repeats (STRs) revealed a significant correlation between temporal bone shape and neutral molecular distance among Old World populations, but not when Native Americans were included. Further analyses suggested a similar pattern for morphological variation and geographic distribution. No significant correlations were found between temporal bone shape and environmental variables: temperature, annual rainfall, latitude, or altitude. Significant correlations were found between temporal bone size and both temperature and latitude, presumably reflecting Bergmann's rule. Thus, temporal bone morphology appears to partially follow an isolation by distance model of evolution among human populations, although levels of correlation show that a substantial component of variation is unexplained by factors considered here.  相似文献   

19.
The study of functional trade‐offs is important if a structure, such as the cranium, serves multiple biological roles, and is, therefore, shaped by multiple selective pressures. The sphyrnid cephalofoil presents an excellent model for investigating potential trade‐offs among sensory, neural, and feeding structures. In this study, hammerhead shark species were chosen to represent differences in head form through phylogeny. A combination of surface‐based geometric morphometrics, computed tomography (CT) volumetric analysis, and phylogenetic analyses were utilized to investigate potential trade‐offs within the head. Hammerhead sharks display a diversity of cranial morphologies where the position of the eyes and nares vary among species, with only minor changes in shape, position, and volume of the feeding apparatus through phylogeny. The basal winghead shark, Eusphyra blochii, has small anteriorly positioned eyes. Through phylogeny, the relative size and position of the eyes change, such that derived species have larger, more medially positioned eyes. The lateral position of the external nares is highly variable, showing no phylogenetic trend. Mouth size and position are conserved, remaining relatively unchanged. Volumetric CT analyses reveal no trade‐offs between the feeding apparatus and the remaining cranial structures. The few trade‐offs were isolated to the nasal capsule volume's inverse correlation with braincase, chondrocranial, and total cephalofoil volume. Eye volume also decreased as cephalofoil width increased. These data indicate that despite considerable changes in head shape, much of the head is morphologically conserved through sphyrnid phylogeny, particularly the jaw cartilages and their associated feeding muscles, with shape change and morphological trade‐offs being primarily confined to the lateral wings of the cephalofoil and their associated sensory structures. J. Morphol. 276:526–539, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
While rostral variation has been the subject of detailed avian evolutionary research, avian skull organization, characterized by a flexed or extended appearance of the skull, has eventually become neglected by mainstream evolutionary inquiries. This study aims to recapture its significance, evaluating possible functional, phylogenetic and developmental factors that may be underlying it. In order to estimate which, and how, elements of the skull intervene in patterning the skull we tested the statistical interplay between a series of old mid-sagittal angular measurements (mostly endocranial) in combination with newly obtained skull metrics based on landmark superimposition methods (exclusively exocranial shape), by means of the statistic-morphometric technique of two-block partial least squares. As classic literature anticipated, we found that the external appearance of the skull corresponds to the way in which the plane of the caudal cranial base is oriented, in connection with the orientations of the plane of the foramen magnum and of the lateral semicircular canal. The pattern of covariation found between metrics conveys flexed or extended appearances of the skull implicitly within a single and statistically significant dimension of covariation. Marked shape changes with which angles covary concentrate at the supraoccipital bone, the cranial base and the antorbital window, whereas the plane measuring the orientation of the anterior portion of the rostrum does not intervene. Statistical covariance between elements of the caudal cranial base and the occiput inplies that morphological integration underlies avian skull macroevolutionary organization as a by-product of the regional concordance of such correlated elements within the early embryonic chordal domain of mesodermic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号