首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have shown that diabetes in the male streptozotocin (STZ)-induced diabetic rat is characterized by a decrease in circulating testosterone and concomitant increase in estradiol levels. Interestingly, this increase in estradiol levels persists even after castration, suggesting extra-testicular origins of estradiol in diabetes. The aim of the present study was to examine whether other target organs of diabetes may be sources of estradiol. The study was performed in male Sprague–Dawley non-diabetic (ND), STZ-induced diabetic (D) and STZ-induced diabetic castrated (Dcas) rats (n = 8–9/group). 14 weeks of diabetes was associated with decreased testicular (ND, 26.3 ± 4.19; D, 18.4 ± 1.54; P < 0.05), but increased renal (ND, 1.83 ± 0.92; D, 7.85 ± 1.38; P < 0.05) and ocular (D, 23.4 ± 3.66; D, 87.1 ± 28.1; P < 0.05) aromatase activity. This increase in renal (Dcas, 6.30 ± 1.25) and ocular (Dcas, 62.7 ± 11.9) aromatase activity persisted after castration. The diabetic kidney also had increased levels of tissue estrogen (ND, 0.31 ± 0.01; D, 0.51 ± 0.11; Dcas, 0.45 ± 0.08) as well as estrogen receptor alpha protein expression (ND, 0.63 ± 0.09; D, 1.62 ± 0.28; Dcas, 1.38 ± 0.20). These data suggest that in male STZ-induced diabetic rats, tissues other than the testis may become sources of estradiol. In particular, the diabetic kidney appears to produce estradiol following castration, a state that is associated with a high degree or renal injury. Overall, our data provides evidence for the extra-testicular source of estradiol that in males, through an intracrine mechanism, may contribute to the development and/or progression of end-organ damage associated with diabetes.  相似文献   

2.
Sucrose gradient studies of rat pineal cytosol incubated with 3H-estradiol (female pineals) or 3H-5 α -dihydrotestosterone (male pineals) revealed a radioactivity peak in the 8 S region which disappeared after superior cervical ganglionectomy or incubation with excess unlabeled hormone. Ganglionectomy decreased significantly estradiol and testosterone uptake by the pineal gland in vitro as well as high affinity binding to pineal cytoplasmic and nuclear components. Norepinephrine treatment counteracted all the effects of ganglionectomy but was unable to modify hormone uptake and binding by the pineal gland of sham-operated controls. Pre-treatment with actinomycin D or propranolol but not with phentolamine impaired norepinephrine effects; propranolol blockage however was only partial. Administration of isoproterenol, L-dopa or phentolamine increased hormone uptake by denervated pineals. The effects of isoproterenol were also observed in vitro and were blocked by propranolol. These results indicate that sex steroid receptors in the pinealocytes are controlled by norepinephrine via beta-adrenergic receptors and that depletion of neural norepinephrine enhanced responsiveness of pineal hormone receptors to exogenous catecholamines.  相似文献   

3.
We have used monoclonal antibodies against the estrogen (E), progestin (P) and androgen (A) receptors (R) to study receptor localization and regulation in the seminal vesicles of rhesus monkeys under different hormonal conditions. The antibodies caused substantial shifts of the appropriately labeled receptors on sucrose gradients. ER levels were lower in intact males than in immature, castrate, and estrogen-treated castrates. With immunocytochemistry, ER were detectable only in stromal and smooth muscle cells, not the epithelium. The number of ER-positive stromal cells was significantly lower in intact males than in immature, castrate, and estrogen-treated castrates, and low in a DHT-treated castrate animal. Androgen receptors were localized in epithelial as well as stromal and smooth muscle cells, and the number of AR-positive stromal cells was highest in intact adults and lowest in castrated and immature animals. Estrogen treatment at the time of castration induced PR in the ER-positive stromal cells, prevented a decline in the number of AR-positive stromal cells, and caused stromal hypertrophy. In summary, in the seminal vesicle, as in the prostate, ER is restricted to the fibromuscular stroma, is suppressed by androgens, and can mediate induction of PR on estrogen treatment. Androgen receptors are present in epithelial as well as stromal and smooth muscle cells, but variations in hormonal state appear to affect regulation of AR more in the stroma than the epithelium.  相似文献   

4.
Androgen receptor was immunolocalized in the epididymal epithelium of rams and in isolated cells using an antibody against a synthetic polypeptide representing a portion of the androgen receptor. Immunostaining was predominant in the epithelium in tissue sections. Concentrations of androgen receptor were determined in cells from the central caput, distal caput, and central corpus epididymidis enzymically dissociated and elutriated to provide two fractions. On the average (n = 18), Fraction I contained 8% principal cells while Fraction II contained 71% principal cells; the stromal cells in each fraction were primarily smooth muscle and fibroblasts. For each sample, the number of DHT receptors (fmol) per 10(6) total cells was greater in Fraction II than in Fraction I. Few cells in Fraction I were immunostained for androgen receptor, whereas most cells in Fraction II were intensely stained. The numbers of DHT receptors per cell, or per principal cell, were similar for the central caput and distal caput, but lower in the central corpus epididymidis. The results support our hypothesis that most epididymal DHT receptors are localized in principal cells and confirm that the region between the central caput and proximal corpus of the ram epididymis is most dependent on androgen stimulation.  相似文献   

5.
Androgens exert their effects through androgen receptors (AR) in tissues. We investigated the distribution of AR in female mole rat tissues. Tissues were excised, fixed with 10% formalin and embedded in paraffin. Sections were stained after microwave antigen retrieval for immunohistochemistry. Immunostaining of AR immunostaining was detected in the nucleus or cytoplasm of the cells in the cerebral cortex, cerebellum, anterior pituitary, lung, liver, uterus and skin. Granulosa and some thecal cells in the ovary, cardiac muscle cells and adipose cells exhibited a nuclear reaction for AR. In the kidney, labeling of AR was restricted to the cytoplasm of tubule cells. We found that AR could be detected using immunohistochemistry in the nucleus or cytoplasm or both in the presence of androgens.  相似文献   

6.
Banu SK  Govindarajulu P  Aruldhas MM 《Steroids》2002,67(13-14):1007-1014
Thyroid gland is one of the non-classical target organs for sex steroids. Presence of androgen and estrogen receptors in the neoplastic and non-neoplastic thyroid glands of mammalian species is well documented. The aim of the present study is to elucidate the changes in serum and thyroidal sex steroids, and their receptors in the thyroid gland of rats from immature to adult age under gonadectomized (GDX) and sex steroids replaced conditions. Normal Wistar male and female rats from immature to adult age (day 21, 30, 45, 60 and 160 post-partum (pp)) were used in the present study. One group (I) of rats was GDX at an early age (day 10 pp) and the other group (II) at the adult age (day 120 pp). Group I rats were sacrificed at different experimental periods such as 21, 30, 45 and 60 days pp, and group II rats were sacrificed at day 160 pp. Another group of GDX rats from group I and II were replaced with physiological doses of testosterone or estradiol. Serum and thyroidal concentrations of sex steroids were estimated by RIA method and the concentrations of receptors by radioreceptor assay. Gonadectomy significantly decreased serum and thyroidal testosterone and estradiol and concentrations of androgen receptor (AR) and estrogen receptor (ER) in the thyroid. Replacement of sex steroids to GDX rats restored the normal level of sex steroids, AR and ER. Therefore, it is suggested from the present study that (i). sex steroids up-regulate their own receptors in the thyroid, (ii). sex steroids may influence thyroid growth and the proliferation of thyrocytes by modulating their receptor concentrations in the thyroid.  相似文献   

7.
8.
T J Chen  W W Tu 《Life sciences》1992,50(21):1639-1647
The present study was conducted to measure the levels of estrogen and androgen receptors (ER and AR, receptively) simultaneously in the anterior pituitary (AP), and various brain regions from adult male and proestrous female hamsters. Medial preoptic area (MPOA), medial basal hypothalamus (MBH), lateral hypothalamus (LH), medial forebrain bundle (MFB), and amygdala (AMG) were identified and removed from 200-microns frozen brain sections by the Palkovits punch-out technique. ER and AR were determined by the in vitro binding assay using [3H]-estradiol and [3H]-methyltrienolone as the binding ligands. In males, high levels of AR were found in the MPOA, MBH, and AP. In females, the MPOA, MBH, LH, and AP contained high levels of ER. The males exhibited significantly higher levels of AR than females in the MPOA, MBH, and LH, whereas the ER levels in these areas were higher in females. In males, ER and AR contents in the AP were higher, but the contents in the AMG were lower as compared to those of females. The calculated ER/AR ratio in MPOA, MBH, and LH were lowest in males. On the contrary, the ratio in these areas were highest in females. These data suggest that sex differences in response to estrogen and androgen may in part be due to sex differences in ER and AR contents in specific brain regions.  相似文献   

9.
Progestin, estrogen and androgen G-protein coupled receptors in fish gonads   总被引:5,自引:0,他引:5  
The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.  相似文献   

10.
雄激素和雌激素受体药物筛选方法的研究进展   总被引:2,自引:0,他引:2  
牟凌云  王明伟 《生命科学》2004,16(5):305-311
雄激素和雌激素受体通过与相应激素特异性结合促进细胞分化和组织生长,发挥重要的生理功能,其功能失调可诱发多种疾病。雄激素和雌激素受体的选择性调节剂是治疗相关疾病的重要药物。基于基因组学、分子生物学、细胞生物学和生物信息学等最新研究成果而发展形成的实验技术或方法被用于新型雄激素和雌激素受体调节剂的筛选,显著加快了新药开发的进程。  相似文献   

11.
Estradiol has previously been shown to suppress the response of the cellular immune system of the rat while enhancing the production of IgM antibodies. Analysis of the cytosol from rat splenocytes showed saturation of specific binding sites at concentrations of between 80 and 160 nM [3H]-estradiol with an approximate Kd of 12 nM. Competitive binding studies showed a dose-dependent decrease in the binding of [3H]-estradiol to the receptor in the presence of increasing concentrations of unlabeled estradiol. Dexamethasone, progesterone and R1881 (synthetic androgen) had no effect on the binding of [3H]-estradiol. The in vivo administration of estradiol resulted in increased nuclear binding of [3H]-estradiol as compared to vehicle treated controls. These results indicate that rat splenocytes possess specific, translocatable estrogen receptors which may be responsible for the observed modulation of the immune system.  相似文献   

12.
13.

Background  

Androgens and estrogens are crucial for mammalian sperm differentiation but their role in biology of mature male gamete is not still defined. The expression of proteins involved in the biosynthesis and action of these steroid hormones has been demonstrated in human spermatozoa, but very few data have been reported in mature sperm from non human species. The purpose of the current study was to investigate the expression of aromatase (P450arom), estrogen (ERalpha/ERbeta) and androgen (AR) receptors in ejaculated spermatozoa of pig.  相似文献   

14.
The presence of steroids and their receptors throughout development, specifically androgen receptor (AR), estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta), in the epididymis of a high estrogen producing species like the stallion has not been determined. Epididymal and testicular samples were collected for analysis of testosterone and estradiol-17beta (E(2)) concentrations and for immunolocalization of AR, ERalpha and ERbeta. The concentration of testosterone in the testis and epididymis were not different among age groups (P>0.05). AR was localized in the principal cells of the caput, corpus and cauda in all four age groups. This lack of change in testosterone concentration and receptor localization suggests that testosterone is important for both development and maintenance of epididymal function. There was an age-related increase in E(2) concentrations in all regions of the epididymis (P<0.05), suggesting that E(2) is also important for adult function. ERbeta was localized in the principal cells of the caput, corpus and cauda in all four age groups, but the localization of ERalpha was regional and age dependent. In peri-pubertal animals, ERalpha immunostaining was most prominent and estradiol was similarly present in all three epididymal regions; this suggests that estradiol also plays a key role in the maturation of the stallion epididymis during the pubertal transition when sperm first arrive in the epididymis. In conclusion, these results suggest that the stallion epididymis is regulated by both androgens and estrogens throughout development and that estradiol is more important to epididymal function in the stallion than previously believed.  相似文献   

15.
Androgen receptors have been found in duck preen glands by using dextran-coated charcoal adsorption. They bound DHT with high affinity (KD = 0.2 nM), limited capacity (45 fmoles/mgP) and good specificity. They sedimented at 8 S in a sucrose gradient and were destroyed by pronase digestion and heating. An estrogen receptor having different binding specificity was also demonstrated. On the basis of a marked annual cycle of gonadal activity in ducks, this system appears appropriate for studying the regulation of sex steroid hormone receptors.  相似文献   

16.
王晓云  张健  李健  段相林 《动物学报》2003,49(4):481-487
应用免疫细胞化学及图像分析等方法,对出生到生后25月龄各发育阶段SD大鼠睾丸内雄激素受体(AR)的表达变化进行了系统的研究。发现(1)睾丸间质细胞:从出生到生后3周龄,AR阳性表达强度较弱;到生后1月龄,AR阳性表达强度显著增强,并达到峰值;在生后2月龄,AR阳性表达强度显著减弱,此后AR阳性表达又呈增强趋势。(2)肌样细胞:从出生到生后2周龄,AR阳性表达强度较弱;到生后3周龄,AR阳性表达强度显著增强,并一直维持到生后2月龄;从生后3月龄,AR阳性表达强度呈减弱趋势,到生后25月龄达到最低水平。(3)血管内皮细胞:从生后3周龄到生后2月龄AR阳性表达较强;生后3月龄,AR阳性表达强度明显减弱;生后25月龄,AR阳性表达强度与生后3月龄相比变化不明显。(4)支持细胞:在生后1月龄出现AR阳性表达,到性成熟后,支持细胞AR阳性表达随生精周期变化而变化,在生后25月龄未见AR阳性表达的支持细胞。(5)生精细胞:出生组,前精原细胞内有AR阳性表达;生后2周龄,精子细胞开始出现AR阳性表达;生后1月龄,精原细胞开始出现AR阳性表达;生后2月龄出现阳性表达的精子,生后25月龄未见阳性表达的生精细胞。  相似文献   

17.
In an attempt to learn whether modulation of steroid hormone receptor by arachidonate is generalized or not, the arachidonate effect was examined in cytosol estrogen (ER), progestin (PR), androgen (AR) and glucocorticoid receptors (GCR) from the central and peripheral tissues of rats by sucrose density gradient centrifugation, and gel filtration on LH20 columns or dextran-coated charcoal absorption. Arachidonate and other long-chain fatty acids appear to inhibit the specific binding of estrogen ([3H]R2858), progestin ([3H]R5020), androgen ([3H]R1881) and glucocorticoid ([3H]dexamethasone) to the respective receptors in brain (neonatal cerebral cortex and hypothalamus-preoptic area, HPOA), uterus and prostate, with the exception of the potentiating effect on the brain estrogen receptors. The potency of the unsaturated fatty acids paralleled to some degree the number of cis double bonds and carbon, in that oleate (C18:1) arachidonate (C20:4) docosahexaenoate (C22:6). The arachidonate inhibition was dose-dependent in the tissue steroid hormone receptors, except for dose-dependent potentiation of the brain cortical estrogen receptors. Inhibitory potency as expressed by the concentration for 50% maximum inhibition (Ki) was in the range of 11-18 microM for the receptors other than the uterine estrogen receptors with the value of 44 microM, suggesting lower sensitivity for the estrogen receptor to the arachidonate effect in the uterus. Analysis on kinetics and Scatchard plot revealed the non-competitive type of the inhibition. In addition, arachidonate lowered dose-dependently the peak of labelled progestin or estrogen binding to the 8S receptor proteins, which were collected from fractions in the 8S region of the cytosols from intact or diethylstibestrol-primed rat uteri. These results suggest the generalized modulatory effect of arachidonate on the steroid hormone receptors in the central and peripheral tissues. Arachidonate could affect, negatively or positively, the estrogen receptors, and negatively the progestin, androgen and glucocorticoid receptors, through a possibly direct but weak binding at sites different from steroid binding sites on the receptor molecules. A potential messenger role of arachidonate itself has been implicated in the regulation or modulation of the steroid hormone receptors.  相似文献   

18.
Spermatozoa are highly specialized cells which transport a single-copy haploid genome to the site of fertilization. Before this, spermatozoa undergo a series of biochemical and functional modifications. In recent years, the crucial role of androgens and estrogens in proper germ cell differentiation during spermatogenesis has been demonstrated. However, their implication in the biology of mature male gametes is still to be defined. Our study provides evidence for the first time that aromatase, the androgen receptor (AR), as well as the estrogen receptors α and β (ERα and ERβ), are present in bank vole spermatozoa. We demonstrated the region-specific localization of these proteins in bank vole spermatozoa using confocal microscopy. Immunoreactive aromatase was observed in the proximal head region and in both the proximal and distal tail regions, whereas steroid hormone receptors were found only in the proximal region of the sperm head. Protein expression in sperm lysates was detected by Western blot analysis. Immunohistochemical results were analyzed quantitatively. Our results show that bank vole spermatozoa are both a source of estrogens and a target for steroid hormone action. Moreover, the presence of aromatase and steroid hormone receptors in the bank vole spermatozoa indicates a potential function of these proteins during capacitation and/or the acrosome reaction.  相似文献   

19.
Cadherins, being responsible for selective cell recognition and normal tissue integrity in adults, regulate morphogenesis in a variety of organs during development. In this study, anti-rat pan-cadherin antibody, specific to all subgroups of the cadherin family, was used to map the distribution of the pan-cadherin immunoreactivity in adult rat organs. Pan-cadherin immunoreactivity positive tissues were: secretory cells of the adenohypophysis, autonomic nerve, corneal epithelium, oesophageal nerve plexus, stomach and pyloric glandular cells, epithelium of the ileum and its nerve plexus, alveolar cells of the lung, proximal convoluted tubules of the kidney, islet cells of Langerhans, and the acinar cells of the exocrine pancreas. For the first time, positive pan-cadherin immunoreactivity was demonstrated in the epithelial cells of the corpus ciliaris and in the nerve plexus of corpus cavernosum of the penis. In conclusion, our results suggest that cells in many tissues and organs of the adult rat synthesize cadherins.  相似文献   

20.
Development of estrogen receptors in the rat hypothalamus   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号