首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present experiment was conducted to evaluate the Hsp-70, 27 and Ubiquitin mRNA expressions and serum T3 concentration in synthetic colored broiler female lines, Punjab Broiler-2 (PB-2), and Naked neck (NN) broiler chicken whose eggs were exposed to 2°C increased incubation temperature for 3 hours each on the 16th, 17 th, and 18th day of incubation. Another set of eggs were incubated at normal conditions that were utilized as the control. A total of 432 chicks, 216 from each breed (PB-2; NN) and treatment (Heat exposed: HE; normal: N), were randomly distributed and reared at high ambient temperatures (32°C-45°C) during the summer season in battery brooders. Birds were sacrificed at 0 and the 28th day post hatch and different tissues (heart, liver, muscle, spleen, and bursa) were collected to study Hsps and ubiquitin mRNA expression. There was no difference between the breeds and age of slaughter in Hsp-70 mRNA expression. The Hsp(70, 27, and ubiquitin) mRNA expression was significantly (P≤0.001) lower in HE birds than that of N birds in PB-2 chickens. Nonsignificant variation was observed in NN chicken. The Hsp-70 mRNA expression was highest in bursa and lowest in muscle and liver. Serum T3 concentration was similar in both HE and N birds. The study concludes that exposure to increased temperature during incubation results in reduced expressions of Hsp mRNA in almost all tissues indicating better thermotolerance of the HE birds.  相似文献   

2.
Salmon lice (Lepeophtheirus salmonis) are parasitic copepods, living mainly on Atlantic salmon and leading to large economical losses in aquaculture every year. Due to the emergence of resistances to several drugs, alternative treatments are developed, including treatment with hydrogen peroxide, freshwater or thermal treatment. The present study gives a first overview of the thermotolerance and stress response of salmon lice. Sea lice nauplii acclimated to 10 °C can survive heat shocks up to 30 °C and are capable of hardening by a sublethal heat shock. We searched in the genome for heat shock protein (HSP) encoding genes and tested their inducibility after heat shock, changes in salinity and treatment with hydrogen peroxide, employing microfluidic qPCRs. We assessed 38 candidate genes, belonging to the small HSP, HSP40, HSP70 and HSP90 families. Nine of these genes showed strong induction after a non-lethal heat shock. In contrast, only three and two of these genes were induced after changes in salinity and incubation in hydrogen peroxide, respectively. This work provides the basis for further work on the stress response on the economically important parasite L. salmonis.  相似文献   

3.
Previously, we reported that thermal conditioning at 39°C on days 13–17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30°C was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39°C at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6°C. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO2, pO2 levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO2 levels and blood pH but depressed pCO2 at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14–15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14–15 only may improve these production parameters.  相似文献   

4.
This study aimed to elucidate the effects of thermal manipulation (TM) during the development and maturation of the thyroid and adrenal axis on broiler chicks hatchability and thermoregulation during hatch, and to evaluate the improvement of thermotolerance acquisition of TM chicks by thermally challenging them post-hatch. Fertile Cobb eggs were divided into three treatments: control, 12 and 24 H. The control eggs were incubated under standard conditions, whereas the 12 and 24 H eggs were incubated from 7 d of incubation (E7) until E16 (inclusive) at 39.5 °C and 65% RH for 12 h/d (12 H) or continuously (24 H). Hatchability, BW and quality of the hatched 24 H chicks were negatively affected, but exhibited significantly improved thermotolerance on heat stress at 3 and 10 d of age for males and females, respectively. It can be concluded that continuous TM during embryogenesis impaired broiler chick performance, but improved their ability to thermoregulate in response to thermal challenge mainly by reducing heat production.  相似文献   

5.
This study evaluated the thermal requirements for development of the cotton mealybug Phenacoccus solenopsis depending on different biological parameters on Okra leaves Abelmoschus esculentusat under two constant temperatures (20 and 30 °C) at (RH 65%, 12:12 h. light/dark). The effect of temperature on eggs was ineffective since it hatched shortly to first nymphal instars after deposition. While the tested temperature caused significant effects on nymphal durations, pupation rate (pre-male stage), females emergence %, pre-oviposition, longevity, post-oviposition periods and fecundity in females (egg deposition, ovisacs numbers and hatchability %). The thermal constant and developmental zero were calculated to be 7.29 °C and 79.9 degree-days (DDs) for eggs, 11.67 °C and 272.9 DDs for nymphal stages, 11.06 °C and 46.4 DDs for males and then 3.31 °C and 554.1 DDs for females, respectively. The duration of the life cycle was 65.6 ± 10.36 days at 20 °C; this was shortened to 35.51 ± 1.12 days at 30 °C. The thermal requirements to complete the insect development for one generation was 8.2 °C for the developmental zero and 774.1 DDs for the thermal constant. Based on the thermal requirements values, the average life cycle duration from January to December 2016 was 61.78 days and the number of annual generations was 7.143 when the average annual temperature was 23.29 °C.  相似文献   

6.
The currrent California condor (Gymnogyps californianus) recovery plan entails increasing the reproductive rate via replacement-clutch manipulation of eggs. During the period from 1983 to 1985, 15 eggs were removed from wild nesting pairs for artificial incubation. The eggs were incubated at a dry bulb temperature of 36.4°C in modified forced-air Lyon Electric incubators. The incubation humidity was adjusted for individual eggs based on weight loss data (water = weight), 25.6–30.0°C wet bulb (41.0–63.0% Relative Humidity (RH)). The chicks were hatched initially under forced-air conditions of 36.1°C dry bulb, 31.1–01.7°C wet bulb (70.0–73.0% RH). In 1984, hatching parameters were changed to still-air conditions, 36.1°C dry bulb (top of the egg), 35.0°C dry bulb (bottom of the egg), 31.1–31.7°C wet bulb (70.0-73.0% RH). Tactile and auditory stimulation was utilized during the pip-to-hatch interval. From among 15 eggs collected, 13 hatched, and 12 condor chicks were raised successfully (hatchability: 86.7%; survivability: 92.3%).  相似文献   

7.
Bradysia odoriphaga and B. difformis (Diptera: Sciaridae) are devastating pests of vegetables, ornamentals and edible mushrooms. In Chinese chive fields, the two Bradysia species occur with similar regularities: outbreaks in spring and autumn, and population decreases in summer. Temperature may be an important factor restricting their population abundance in summer. Here, we performed a life-table study under constant high temperatures and assessed the tolerance of two Bradysia species to heat shock. Life parameters of the Bradysia species indicated slow developmental rates, and low survival rates and fecundity, when the temperature was higher than 30 °C. At 34 °C, individuals were unable to reach the adult stages from eggs. Moreover, temperatures above 36 °C showed lethal effects, decreasing their survival rates. The median lethal time (LT50) values of 4th instar B. odoriphaga and B. difformis larvae were 46.82 and 32.97 h, respectively, while the values at 38 °C were 2.12 and 1.51 h, respectively. The 4th instar larvae and pupae possessed higher thermotolerance levels than adults and eggs, indicating sensitivities to heat stress. Moreover, B. odoriphaga was more thermotolerant than B. difformis. Thus, weak thermotolerance levels may restrict their occurrences during the period of summer heat, and the difference in thermotolerance levels between the two species may be related to their regional distributions.  相似文献   

8.
Broilers are more vulnerable to high temperatures than mammals due to the feather cover, lack of sweat glands, fast growth and intensive breeding in commercial systems. Thermal stresses affect the function of various organs and change the expression profiles of hundreds of genes in the different tissues of broilers. Thermal manipulation (TM) during embryogenesis can increase heat tolerance in growing broilers. Small heat shock proteins (SHSPs) are a group of HSPs which participate in many cellular functions like response to different stressors. However, their role in the thermotolerance has not been fully elucidated. Ninety fertilized eggs were randomly divided into three groups (30 eggs/group; 10 eggs/replicate). Normal control (NC) eggs were incubated at 37.5 °C throughout the incubation period whereas heat stress (HS) and cold stress (CS) groups were kept at 41 °C and 33 °C from 15 to 17th day of incubation for 3 h each day, respectively. On day 20, samples from the cerebrums were harvested for histopathology and mRNA expression analyses of HSPB1, HSPB5, HSPB8, and HSPB9. There were no significant differences in survivability, defected embryos, hatchability, and body weight among treatments. TM had no major deleterious effects on the cerebral tissue except for mild degeneration in the HS group. HSPB1, HSPB5, HSPB8, and HSPB9 were expressed in the presence and absence of TM. All SHSP genes tested were downregulated in response to TM except for HSPB9 which was upregulated in the HS group. The highest change in gene expression due to TM observed for HSPB1. This study presents a broader understanding of mechanisms underlying response to TM in broilers. The results suggest that HSPB1, HSPB5, HSPB8, and HSPB9 are involved in thermotolerance in broilers and SHSPs could be involved in the gene expression profiling of TM. It may propose the use of nutritional supplements in the poultry industry to modulate SHSPs.  相似文献   

9.
Summary

The development and improvement of artificial incubation techniques for freshwater crayfish eggs and their incorporation into the working schedule of breeding centres is of great interest for commercial production. Factors such as the water circulation system, flow rate, thermal treatment, etc., could strongly influence the success of the process. The present study attempts to test the possible influence of one of these variables, the thermal regime, on both the duration of embryonic development and the efficiency rates obtained in the artificial incubation of white-clawed crayfish (Austropotamobius pallipes) eggs. Four different thermal treatments were tested (three of them included a period at low temperature: 4°-5°C). Survival rates to juvenile stage 2 were similar in the four cases, ranging between 66.7 and 72.7%. We conclude that water cooling (an expensive management procedure) is not necessary in astacid breeding centres provided that egg development takes place at moderately low temperatures (8°-10°C) with a subsequent increase of up to 15°C from the eyed stage. However, the inclusion of periods at low temperature (4°-5°C) allows the staggered production of juvenile batches throughout a 3-week period without adverse effects on efficiency rates. This could be useful to breeding centres in meeting seasonal market requirements. In our study, egg and juvenile losses (mortality rate: 15–20%) were concentrated during the last phases of embryogenesis, particularly from the eyed stage to juvenile stage 2, during which they amounted to more than 90% of the overall mortality which took place during the artificial incubation process.  相似文献   

10.
Hyperthermia is a potent inducer of apoptosis in many cell lines. A brief exposure to mildly elevated temperatures elicits a transient state of augmented resistance to subsequent thermal stress. Here we show that a hyperthermic treatment of 43°C for 1 h is sufficient to induce apoptosis in the cell line HL-60. This observation is based on morphologic evaluation and on comet assay results (an extremely sensitive method of detecting and quantifying apoptotic DNA fragmentation in individual cells). The thermotolerance phenomenon was also verified in the same manner by giving the cells a brief 30 min sub-lethal heat conditioning treatment at 43°C followed by a 6 h incubation time prior to the administration of a lethal heat load (43°C for 1 h). We observed a dramatic decrease in resultant apoptoses in the thermotolerized cells in comparison to unconditioned cells. We assessed the necessity of de novo protein synthesis in the protective phenomenon. When the conditioned cells were given a cycloheximide treatment prior to heat conditioning we saw a sensitization of the conditioned cells to secondary thermal injury. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Fopius arisanus (Sonan) is a solitary parasitoid of eggs and the first instar larvae of Tephritidae. Due to the occurrence of Ceratitis capitata (Wiedemann) in various regions and under several climatic conditions, this study aimed to evaluate the effect of different temperatures on the embryonic development (egg–adult) and determine thermal requirements and the number of annual generations F. arisanus on eggs of C. capitata. In the laboratory, eggs of C. capitata (24 h) were submitted to parasitism of F. arisanus during 6 h. Later, the eggs were placed in plastic containers (50 mL) (50 eggs/container) on a layer of artificial diet and packed in chambers at temperatures 15, 18, 20, 22, 25, 28, 30, and 32 ± 1°C, RH 70 ± 10%, and a photophase of 12 h. The largest number of offspring, emergence rate, and weight of adults of F. arisanus were observed at 25°C. The highest sex ratios (sr > 0.75) were recorded at 15 and 18°C, being statistically higher than the temperatures 20°C (0.65), 22°C (0.64), 25°C (0.65), 28°C (0.49), and 30°C (0.47). At 32°C, there was no embryonic development of F. arisanus. The egg–adult period was inversely proportional to temperature. Based on the development of the biological cycle (egg–adult), the temperature threshold (T t) was 10.3°C and thermal constant (K) of 488.34 degree-days, being the number of generations/year directly proportional to the temperature increase. The data show the ability of F. arisanus to adapt to different thermal conditions, which is important for biological control programs of C. capitata.  相似文献   

12.
The low molecular weight (LMW) heat shock protein (HSP), HSP16.6, in the unicellular cyanobacterium, Synechocystis sp. PCC 6803, protects cells from elevated temperatures. A 95% reduction in the survival of mutant cells with an inactivated hsp16.6 was observed after exposure for 1 h at 47°C. Wild-type cell survival was reduced to only 41%. HSP16.6 is also involved in the development of thermotolerance. After a sublethal heat shock at 43°C for 1 h and subsequent challenge exposure at 49°C for 40 min, mutant cells did not survive, while 64% of wild-type cells survived. Ultrastructural changes in the integrity of thylakoid membranes of heat-shocked mutant cells also are discussed. These results demonstrate an important protective role for HSP16.6 in the protection of cells and, in particular, thylakoid membrane against thermal stress. Received: 14 October 1999 / Accepted: 16 November 1999  相似文献   

13.
Anthocoris minki Dohrn is a promising indigenous Anthocoris species for the biological control of Agonoscena pistaciae Burck. and Laut. (Homoptera: Psyllidae) in pistachio orchards in Turkey. The adult longevity, fecundity, life table parameters and prey consumption of A. minki fed on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs were studied at combinations of three constant temperatures (20, 25 and 30 ± 1°C) with two relative humidity (RH) levels (40 and 65 ± 5%). Studies indicated that temperature and RH significantly affected adult longevity, fecundity and prey consumption of A. minki. The greatest adult female longevity was 116.0 days at 20°C and 65% RH; the shortest adult female longevity was 27.5 days at 30°C and 40% RH. At all tested temperatures, the oviposition period and prey consumption of both females and males significantly decreased at low RH compared to high RH. The highest and lowest total fecundities were 276.0 eggs (at 20°C and 65% RH) and 42.4 eggs (at 25°C and 40% RH), respectively. The intrinsic rates of natural increase (r m) at 40 and 65% RH were 0.049 and 0.076 at 20°C, 0.072 and 0.096 at 25°C and 0.076 and 0.112 at 30°C, respectively. The highest mean numbers of E. kuehniella eggs consumed by females and males were 859.6 (at 20°C) and 515.3 (at 25°C) at 65% RH, respectively; the lowest were 183.3 (at 20°C) and 95.5 (at 25°C) at 40% RH, respectively.  相似文献   

14.
Incubation of pacific cod eggs was divided into eight series, in which temperatures were set at −0.04°C to +4.03°C and warm and cold conditions alternated. The morphological changes that took place during the embryogenesis were described in detail using the results of the incubation. Twenty-two morphological characters that could be identified easily and that characterized the morphogenesis were defined in the course of development. The results of the incubation and data from the literature showed that the duration of the embryonic period in the Pacific cod’s lifecycle grew exponentially as water temperature decreased. It was found during the experiment that developing cod eggs survived low water temperatures up to freezing, as well as abrupt warming or cooling (over 3°C). According to the widely accepted Rass scale, the first stage of the Pacific cod embryogenesis takes 21% of its total duration, the second stage 23%, the third, 17%, and the fourth, 39%. However, at a temperature below 0°C, the relative duration of the stages of cleavage and embryonic shield was slightly shortened, whereas the mature embryo stage extended to almost half of the embryogenesis period. A more comprehensive analysis of temperature effects on embryogenesis revealed that the reduction of the rate of embryogenesis upon a temperature decrease occurred mostly at later stages of embryo growth. Modeling of development using defined morphological characters showed that the duration of embryogenesis grew linearly as the incubation temperature dropped in the first half of the embryogenesis and exponentially in the second half. A function was selected that described the obtained results most satisfactorily and that could be used for estimating the duration of the entire embryogenesis or any its stages within the range of water temperatures typical for Pacific cod.  相似文献   

15.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

16.
The protein ROF2 from the plant Arabidopsis thaliana acts as a heat stress modulator, being involved in the long-term acquired thermotolerance of the plant. Here we investigate the relationship between the biological function and the structure of ROF2, inferred by circular dichroism (CD) spectroscopy. The far-UV CD spectra, analyzed with the CDPro and DICHROWEB program packages, yield the percentages of α-helices, β-sheets, unordered regions, turns and poly(Pro)II-helices in the secondary structure of ROF2. According to the analysis, the percentages of the structural elements of ROF2 are about 40% for β-sheets, 30% for unordered regions, 17% for turns, 10% for poly(Pro)II-helices and 3% for α-helices. The near-UV CD spectra suggest that ROF2 proteins can associate, forming super-secondary structures. Our CD experiments performed at temperatures between 5 °C and 97 °C indicate that the thermal denaturation of ROF2 caused by a raise in temperature up to 55 °C is followed by a thermal refolding of the protein as the temperature is raised further. The new secondary structure, acquired around 65 °C, remains stable up to 97 °C. The structural stability of ROF2 at high temperatures might play an important role in the experimentally observed thermotolerance of Arabidopsis thaliana.  相似文献   

17.
Studies on biology of Oligonychus mangiferus (Rahman and Sapra) at combination of eight constant temperatures and relative humidities (RHs) viz., 7.0°C with 85% RH, 10°C with 80% RH, 15.0°C with 75% RH, 23.0°C with 70% RH, 31.0°C with 65% RH, 34.0°C with 65% RH, 36.0°C with 60% RH and 40.0°C with 55% RH revealed that the optimal condition for the development of these mites are 15.0–31.0°C and 65–75% RH. The highest temperature and the lowest RH accelerated the rate of development and induced more reproduction of O. mangiferus. Its population also multiplied 30.81 times in a generation time of 27.36 days at 31.0°C and 65% RH, while the same population only increased 7.46 times in a generation time of 48.07 days at 15.0°C and 75% RH. Fecundity was highest at 31.0°C and 65% RH with 46.43 eggs per female. The highest intrinsic rate of natural increase was observed at 31.0°C as 0.125 per day.  相似文献   

18.
We investigated the correlation between the development of acute thermotolerance and the phosphorylation, synthesis, and expression of the HSP28 family in murine L929 cells. Following heating at 43 degrees C for 30 min, thermotolerance developed rapidly in exponential-phase cells and reached its maximum 4-9 h after heat shock. Maximal thermal resistance was maintained for 24 h and then gradually decayed. However, heat-induced phosphorylation of HSP28 was not detected. Furthermore, HSP28 synthesis during incubation at 37 degrees C for 12 h following heat shock was not detected by [3H]-leucine labeling followed by two-dimensional polyacrylamide gel electrophoresis. In addition, Northern blots failed to demonstrate expression of the HSP28 gene. Unlike HSP28, the expression of constitutive and inducible HSP70 genes, along with the synthesis of their proteins, was observed during incubation at 37 degrees C after heat shock. These results demonstrate that HSP28 synthesis and its phosphorylation are not required to develop acute thermotolerance in L929 cells.  相似文献   

19.
Salicylic acid (SA) could be involved in the development of tolerance to abiotic stresses, to heat shock in particular. Under normal conditions (26°C), treatment with SA improved the tolerance of heterotrophic Arabidopsis thaliana (L.) Heynh culture to severe heat shock (50°C). Under mild heat shock (37°C) inducing the development of thermotolerance, the presence of SA, in contrast, reduced the capability of arabidopsis cells to tolerate high temperature (50°C) and simultaneously suppressed induction of HSP synthesis (Hsp101 and Hsp17.6) important for the development of induced thermotolerance. Since SA suppressed cell respiration and activated the alternative pathway of electron transport, SA is supposed, by modulating mitochondria functions, to be an endogenous regulator of plant stress gene expression.  相似文献   

20.
An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague–Dawley rats (21–28 days old, 70–90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号