共查询到20条相似文献,搜索用时 0 毫秒
1.
Loss‐of‐function screening by CRISPR/Cas9 gene knockout with pooled, lentiviral guide libraries is a widely applicable method for systematic identification of genes contributing to diverse cellular phenotypes. Here, Random Sequence Labels (RSLs) are incorporated into the guide library, which act as unique molecular identifiers (UMIs) to allow massively parallel lineage tracing and lineage dropout screening. RSLs greatly improve the reproducibility of results by increasing both the precision and the accuracy of screens. They reduce the number of cells needed to reach a set statistical power, or allow a more robust screen using the same number of cells. 相似文献
2.
利用功能缺失型(Loss-of-function)或者功能获得型(Gain-of-function) 策略高通量筛选功能基因,是研究人员快速寻找调控特定表型的重要或关键基因的主要方法。RNA干扰(RNA interference,RNAi)的遗传筛选方法因操作简单、成本相对较低等优势,尽管已经得到了广泛的应用,然而其抑制效果不完全、脱靶效应明显等劣势依然存在。近年来兴起的CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat sequences/ CRISPR-associated protein 9)技术能快速、简便、准确地实现基因组敲除等编辑功能,因而成为一种强大的遗传筛选工具;在各种细胞系、人和小鼠及斑马鱼等多种模式动物中,大规模运用该方法筛选功能基因已经取得了巨大成功。本文总结了CRISPR/Cas9技术的特点,将其与传统基因工程方法进行了分析比较,回顾了近期相关的高通量功能基因筛选工作,最后探讨了该技术未来的发展趋势。 相似文献
3.
The dbl oncogene product is the defining member of a family of onco-proteins known as Dbl guanine nucleotide exchange factors (GEFs) that facilitate the activation of the small GTP-binding proteins Cdc42, Rac, and Rho. Oncogenic activation of proto-Dbl occurs through loss of the amino-terminal 497 residues, rendering the protein constitutively active. Because both onco- and proto-Dbl contain the structural elements required for GEF activity (i.e. the Dbl homology (DH) and pleckstrin homology (PH) domains), it is thought that the amino terminus of proto-Dbl somehow inhibits the biochemical activity of the protein. To better understand the molecular basis of this regulation, we set forth to identify cellular proteins that preferentially bind the proto-oncogenic form of Dbl. We identified the molecular chaperone heat shock cognate protein (Hsc70) as a binding partner that preferentially interacts with the proto-oncogenic form of Dbl. Dbl is complexed with Hsc70 in transfected cells, as well as in native mouse brain extracts. The interaction between Hsc70 and proto-Dbl is mediated by at least two regions in Dbl, the aminoterminal spectrin homology domain (residues 224-417) and the pleckstrin homology domain (residues 711-808). Overexpression of a dominant negative Hsc70 mutant leads to activation of proto-Dbl GEF activity, indicating that the chaperone negatively regulates proto-Dbl function in vivo. We propose that Hsc70 attenuates Dbl activity by maintaining an inactive conformation in which the amino terminus is "folded over" the catalytic DH-PH domain. 相似文献
4.
Chantal LeBlanc Fei Zhang Josefina Mendez Yamile Lozano Krishna Chatpar Vivian F. Irish Yannick Jacob 《The Plant journal : for cell and molecular biology》2018,93(2):377-386
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off‐target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR‐induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5‐fold in somatic tissues and up to 100‐fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double‐stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on‐target mutagenesis in plants using CRISPR/Cas9. 相似文献
5.
The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells. 相似文献
6.
Akhmetova E. A. Golyshev V. M. Vokhtantcev I. P. Meschaninova M. I. Venyaminova A. G. Novopashina D. S. 《Russian Journal of Bioorganic Chemistry》2021,47(2):496-504
Russian Journal of Bioorganic Chemistry - A photoactivatable CRISPR/Cas9 system consisting of the Cas9 protein, synthetic 102-nt sgRNA or a pair of guide crRNA/tracrRNA, and blocking photocleavable... 相似文献
7.
8.
Exogenous heat shock cognate protein Hsc70 prevents axotomy-induced death of spinal sensory neurons 总被引:1,自引:0,他引:1 下载免费PDF全文
Lucien J. Houenou Linxi Li Ming Lei Carol R. Kent Michael Tytell 《Cell stress & chaperones》1996,1(3):161-166
Elevation of intracellular heat shock protein (Hsp)70 increases resistance of cells to many physical and metabolic insults. We tested the hypothesis that treatment with Hsc70 can also produce that effect, using the model of axotomy-induced neuronal death in the neonatal mouse. The sciatic nerve was sectioned and in some animals purified bovine brain Hsc70 was applied to the proximal end of the nerve immediately thereafter and again 3 days later. Seven days postaxotomy, the surviving sensory neurons of the lumbar dorsal root ganglion (DRG) and motoneurons of the lumbar ventral spinal cord were counted to assess cell death. Axotomy induced the death of approximately 33% of DRG neurons and 50% of motoneurons, when examined 7 days postinjury. Application of exogenous Hsc70 prevented axotomy-induced death of virtually all sensory neurons, but did not singificantly alter motoneuron death. Thus, Hsc70 may prove to be useful in the repair of peripheral sensory nerve damage. 相似文献
9.
10.
11.
Lei Deng Hang Wang Chuanlong Sun Qian Li Hongling Jiang Minmin Du Chang-Bao Li Chuanyou Li 《遗传学报》2018,45(1):51-54
正Tomato(Solanum lycopersicum)is the leading vegetable crop worldwide and an essential component of a healthy diet(Lin et al.,2014;Du et al.,2017).Fruit color is regarded as one of the most important commercial traits in tomato(The Tomato Genome Consortium,2012).Consumers in different regions have different color preferences.For example,European and American 相似文献
12.
CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9(CRISPR-associated proteins)作为一种新型基因组编辑技术,为解释疾病的发生机制和治疗疾病提供了新方法。来自Ⅱ型原核CRISPR系统的CRISPR/Cas9能够通过单链向导RNA(single guide RNA, sgRNA)将Cas9核酸酶靶定到特定的基因组序列发挥作用。已经被成功用来进行基因编辑构建疾病模型,以进行相关领域的功能研究和疾病的治疗。CRISPR/Cas9技术正在迅速的应用于生物医学研究的各个领域,包括心血管领域,它促进了人们对电生理、心肌病、心律失常以及其他心血管疾病的更多了解,已经创建了靶向很多基因的细胞和动物模型,为新一类疗法打开了大门。本综述介绍了CRISPR/Cas9的作用原理、优点和局限性,以及在心血管疾病中的应用进展。 相似文献
13.
14.
CRISPR/Cas9技术是新近发展起来的对细胞和动物模型进行基因编辑的重要方法。本文利用DNA双链断裂(Double-strand breaks, DSBs)引起的同源重组(Homologous recombination, HR)依赖与非依赖的修复机制,建立基于CRISPR/Cas9核酸酶技术构建定点突变小鼠品系的技术体系。针对赖氨酸特异脱甲基化酶2b(Lysine (K)-specific demethylase 2b, Kdm2b)酶活关键位点对应的基因组DNA序列设计单一导向RNA(Single-guide RNA, sgRNA),通过与Cas9 mRNA共显微注射,分别得到Kdm2b基因发生移码突变的基因失活品系及关键位点氨基酸缺失的酶活突变型小鼠品系。此外,利用HR介导的修复机理,将黄素单加氧酶3(Flavin containing monooxygenases3, Fmo3)基因的sgRNA序列及对应的点突变单链寡脱氧核苷(Single strand oligonucleotides, ssODN)修复模板共注射到小鼠受精卵雄原核。对F0小鼠基因测序分析显示,成功构建了Fmo3基因移码突变的基因敲除和单碱基定点突变的基因敲入小鼠,这些突变能够稳定遗传给子代。本研究利用CRISPR/Cas9技术,通过同源重组依赖与非依赖两种DNA损伤修复方式,成功构建了特定位点突变的小鼠品系。 相似文献
15.
基因编辑技术自问世以来就一直作为生物技术领域的研究热点。基因编辑工具成簇的规律间隔短回文重复序列及其相关系统(CRISPR/Cas系统)具有特异性、简便性和灵活性等优点,为研究人员提供了丰富的遗传操作工具,也让CRISPR/Cas系统的应用在多种生物中得到了飞速发展。特别是将转录激活因子与失活的Cas蛋白结合,可在RNA转录水平实现基因表达特异性调控,为生物技术在医学研究及农业领域的发展做出了重要的贡献。外源基因的过表达是验证基因功能和基因调控的常用方法,然而由于载体容量的限制难以实现多基因过表达。基于CRISPR/Cas9激活系统可在不同向导RNA的引导下对多个基因进行调控,实现调控水平验证基因功能。本文通过对CRISPR/Cas9激活系统组成及不同激活策略进行总结,整理针对过度激活的解决方案,为CRISPR/Cas9激活系统应用于棉花遗传改良及除草剂抗性研究提供更多参考。 相似文献
16.
体细胞核移植技术在家畜良种繁育、基因修饰动物生产、濒危动物的拯救和人类疾病的治疗等领域具有重要的应用价值,但目前克隆动物生产效率较低,平均不超过5%。低下的克隆效率极大地限制了该技术的快速发展。在影响克隆猪生产效率的诸多因素中,X染色体的异常失活是导致克隆效率低下的重要原因,而与X染色体失活密切相关的一个重要基因是Xist基因,这表明Xist基因可能直接或间接地影响猪的克隆效率。本文以CRISPR/Cas系统为基础,在Xist基因上设计5个CRISPR/Cas系统打靶位点,并筛选出有效的Target 3、Target 4 sgRNA,在细胞水平切割效率为1%和3%,在胚胎水平为75%和85.7%。同时将有效的sgRNA体外转录并显微注射至胚胎体内,发现Target 3和Target 4组合效果最好,敲除效率为100%。通过胞浆注射和胚胎移植方法生产出6头克隆猪,有2头活仔实现完全敲除。本文成功建立Xist基因敲除猪模型,为后续通过敲除猪Xist基因提高克隆效率的研究奠定了基础。 相似文献
17.
CRISPR/Cas9 genome editing in wheat 总被引:1,自引:0,他引:1
18.
Tongchai Payungwoung Naoaki Shinzawa Akina Hino Tubasa Nishi Yuho Murata Masao Yuda Shiroh Iwanaga 《Parasitology international》2018,67(5):605-608
The CRISPR/Cas9 nuclease system is a powerful method to genetically modify the human malarial parasite, Plasmodium falciparum. Currently, this method is carried out by co-transfection with two plasmids, one containing the Cas9 nuclease gene, and another encoding the sgRNA and the donor template DNA. However, the efficiency of modification is currently low owing to the low frequency of these plasmids in the parasites. To improve the CRISPR/Cas9 nuclease system for P. falciparum, we developed a novel method using the transgenic parasite, PfCAS9, which stably expresses the Cas9 nuclease using the centromere plasmid. To examine the efficiency of genetic modification using the PfCAS9 parasite, we performed site-directed mutagenesis of kelch13 gene, which is considered to be involved in artemisinin resistance. Our results demonstrated that the targeted mutation could be introduced with almost 100% efficiency when the transfected PfCAS9 parasites were treated with two drugs to maintain both the centromere plasmid containing the Cas9 nuclease and the plasmid having the sgRNA. Therefore, the PfCAS9 parasite is a useful parasite line for the genetic modification of P. falciparum. 相似文献
19.
《遗传学报》2016,(5)
正Genomes encode the genetic information that controls the development and physiological functions of all living organisms on our planet,and are therefore of central interest in all aspects of biomedical research.To understand the blueprint of life,scientists have long aimed to read and manipulate the genome using a rapidly expanding toolbox.To read the genome,novel state-of-the-art sequencing technologies have made it possible to sequence any single genome rapidly and cheaply.However,methods for introducing targeted modifications of the genome have lagged behind,and though 相似文献
20.
《遗传学报》2016,(2)
The clustered regularly interspaced short palindromic repeats(CRISPR)/Cas9 system, a simple and efficient tool for genome editing, has experienced rapid progress in its technology and applicability in the past two years. Here, we review the recent advances in CRISPR/Cas9 technology and the ways that have been adopted to expand our capacity for precise genome manipulation. First, we introduce the mechanism of CRISPR/Cas9, including its biochemical and structural implications. Second, we highlight the latest improvements in the CRISPR/Cas9 system, especially Cas9 protein modifications for customization. Third, we review its current applications, in which the versatile CRISPR/Cas9 system was employed to edit the genome, epigenome, or RNA of various organisms. Although CRISPR/Cas9 allows convenient genome editing accompanied by many benefits, we should not ignore the significant ethical and biosafety concerns that it raises. Finally, we discuss the prospective applications and challenges of several promising techniques adapted from CRISPR/Cas9. 相似文献