首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human MHC class I chain-related A (MICA) is a tumor-associated antigen that can be recognized by Vdelta1 subset of tumor-infiltrating gammadelta T cells. We previously reported that immobilized recombinant MICA protein could induce the proliferation of tumor-infiltrating Vdelta1 gammadelta T cells in vitro. But there has been no direct evidence showing the engagement of gammadelta T cell receptors (TCR) of the induced cells with MICA. In the current investigation, we show that MICA induces specific cytolytic activity of the expanded gammadelta T cells. We expressed the coupled V domains from the MICA-induced T cells as a single polypeptide chain Vdelta Vgamma TCR (gammadelta scTCR). Such scTCR can specifically bind MICA of HeLa cells. Direct interaction of gammadelta scTCRs with in vitro expressed MICA was monitored using an IAsys biosensor. We found that the Vdelta1 scTCR can specifically bind to immobilized MICA molecule and MICA alpha1alpha2 domains are responsible for the binding reaction.  相似文献   

2.
3.
4.
5.
Staphylococcal lipases: biochemical and molecular characterization   总被引:2,自引:0,他引:2  
Rosenstein R  Götz F 《Biochimie》2000,82(11):1005-1014
To date, the nucleotide sequences of nine different lipase genes from six Staphylococcus species, three from S. epidermidis, two from S. aureus, and one each from S. haemolyticus, S. hyicus, S. warneri, and S. xylosus, have been determined. All deduced lipase proteins are similarly organized as pre-pro-proteins, with pre-regions corresponding to a signal peptide of 35 to 38 amino acids, a pro-peptide of 207 to 321 amino acids with an overall hydrophilic character, and a mature peptide comprising 383 to 396 amino acids. The lipases are secreted in the pro-form and are afterwards processed to the mature form by specific proteases. The pro-peptide of the S. hyicus lipase is necessary for efficient translocation and for protection against proteolytic degradation. Despite being very similar in their primary structures the staphylococcal lipases show significant differences in their biochemical and catalytic properties, such as substrate selectivity, pH optimum and interfacial activation. The lipase from S. hyicus is unique among the staphylococcal and bacterial lipases in that it has not only lipase activity, but also a high phospho-lipase activity. All staphylococcal lipases are dependent on Ca(2+), which is thought to have a function in stabilizing the tertiary structure of the lipases. Evidence exists that staphylococcal lipases like other bacterial lipases, possess a lid-like domain that might be involved in the interfacial activation of these enzymes.  相似文献   

6.
Congenital adrenal hyperplasia is a disorder occurring in both sexes and is the commonest cause of ambiguous genitalia. It is a group of autosomal recessive disorders in which, on the basis of an enzyme defect the bulk of steroid hormone production by adrenal cortex shifts from corticosteroids to androgens. Autosomal recessive mutations in the CYP21, CYP17, CYP11B1 and 3betaHSD genes that encode steroidogenic enzymes, in addition to mutations in the gene encoding the intracellular cholesterol transport protein steroidogenic acute regulatory protein StAR can cause CAH. Each of the defects causes different biochemical consequences and clinical features. Deficiencies in 21 hydroxylase (21-OH) and 11beta-Hydroxylase (11beta-OH) are the two most frequent causes of CAH. All the biochemical defects impair cortisol secretion, resulting into compensatory hypersecretion of ACTH and consequent hyperplasia of the adrenal cortex. Research in recent years has clarified clinical, biochemical and genetic problems in diagnosis and treatment of the disorders. Expanding knowledge of the gene mutations associated with each of these disorders is providing valuable diagnostic tools in addition to the biochemical profile and phenotype. Genotyping is useful in selecting instances to provide genetic counseling and to clarify ambiguous cases.  相似文献   

7.
Markers for evaluating the establishment of cyanobacteria based on their sensitivity or resistance to antibiotics, saccharide utilization patterns and PCR generated fingerprints were developed. Four selected strains (isolates from rhizosphere soils of diverse agro-ecosystems) have shown potential as diazotrophs and exhibited plant growth promoting abilities. Different responses were obtained on screening against 40 antibiotics, which aided in developing selectable antibiotic markers for each strain. Biochemical profiles generated using standardized chromogenic identification system (including saccharide utilization tests) revealed that 53 % of the saccharides tested were not utilized by any strain, while some strains exhibited unique ability for utilization of saccharides such as melibiose, cellobiose, maltose and glucosamine. PCR based amplification profiles developed using a number of primers based on repeat sequences revealed the utility of 3 primers in providing unique fingerprints for the strains.  相似文献   

8.
9.
This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 +/- 1 and 54 +/- 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 +/- 1 and 78 +/- 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10-15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 +/- 2% of the initial tension, a value significantly lower than the 71 +/- 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 +/- 2% at 0 and 70 +/- 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 +/- 3 vs. 93 +/- 1%). As before, force production at 75-Hz stimulation did not fully recover until 10-15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Our recent studies have shown that both cigarette smoke and UV-containing light, which are the most widespread and ubiquitous mutagens and carcinogens in the world, cause systemic genotoxic damage in hairless mice. Further studies were designed with the aim of evaluating the induction of genotoxic and carcinogenic effects in Swiss albino mice exposed to smoke and/or light since birth. We observed that a 4-month whole-body exposure of mice to mainstream cigarette smoke, starting at birth, caused an early and potent carcinogenic response in the lung and other organs. Our further experiments showed that exposure of mice to environmental cigarette smoke, during the first 5 weeks of life, resulted in a variety of significant alterations of intermediate biomarkers, including cytogenetic damage in bone marrow and peripheral blood, formation of lipid peroxidation products, increase of bulky DNA adduct levels, induction of oxidative DNA damage, and overexpression of OGG1 gene in lung, stimulation of apoptosis, hyperproliferation and loss of Fhit protein in pulmonary alveolar macrophages and/or bronchial epithelial cells, and early histopathological alterations in the respiratory tract. Moreover, exposure of mice to UV-containing light, mimicking solar irradiation, significantly enhanced oxidative DNA damage and bulky DNA adduct levels in lung, and synergized with smoke in inducing molecular alterations in the respiratory tract. The baseline OGG1 expression in lung was particularly high at birth and decreased in post-weanling mice. Oxidative DNA damage and other investigated end-points exhibited differential patterns in post-weanling mice and adult mice. The findings of these studies provide a mechanistic clue to the general concept that the neonatal period and early stages of life are critical in affecting susceptibility to carcinogens.  相似文献   

11.
Lipoxygenase (LOX) are enzymes implicated in a broad range of inflammatory diseases, cancer, asthma and atherosclerosis. These diverse biological properties lead to the interesting target for the inhibition of this metabolic pathway of LOX. The drugs available in the market against LOX reported to have various side effects. To develop potent and selective therapeutic agents against LOX, it is essential to have the knowledge of its active site. Due to the lack of structural data of human LOX, researchers are using soybean LOX (sLOX) because of their availability and similarities in the active site structure. Based on the crystal structure of sLOX-3 and its complex with known inhibitors, we have designed a tripeptide, FWY which strongly inhibits sLOX-3 activity. The inhibition by peptide has been tested with purified sLOX-3 and with LOX present in blood serum of breast cancer patients in the presence of substrate linoleic acid and arachidonic acid respectively. The dissociation constant (K(D)) of the peptide with sLOX-3 as determined by Surface Plasmon Resonance (SPR) was 3.59x10(-9) M. The kinetic constant (K(i)) and IC(50), as determined biochemical methods were 7.41x10(-8) M and 0.15x10(-6) M respectively.  相似文献   

12.
In view of rising prices of crude oil due to increasing fuel demands, the need for alternative sources of bioenergy is expected to increase sharply in the coming years. Among potential alternative bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products. Lignocelluloses as agricultural, industrial and forest residuals account for the majority of the total biomass present in the world. To initiate the production of industrially important products from cellulosic biomass, bioconversion of the cellulosic components into fermentable sugars is necessary. A variety of microorganisms including bacteria and fungi may have the ability to degrade the cellulosic biomass to glucose monomers. Bacterial cellulases exist as discrete multi-enzyme complexes, called cellulosomes that consist of multiple subunits. Cellulolytic enzyme systems from the filamentous fungi, especially Trichoderma reesei, contain two exoglucanases or cellobiohydrolases (CBH1 and CBH2), at least four endoglucanases (EG1, EG2, EG3, EG5), and one β-glucosidase. These enzymes act synergistically to catalyse the hydrolysis of cellulose. Different physical parameters such as pH, temperature, adsorption, chemical factors like nitrogen, phosphorus, presence of phenolic compounds and other inhibitors can critically influence the bioconversion of lignocellulose. The production of cellulases by microbial cells is governed by genetic and biochemical controls including induction, catabolite repression, or end product inhibition. Several efforts have been made to increase the production of cellulases through strain improvement by mutagenesis. Various physical and chemical methods have been used to develop bacterial and fungal strains producing higher amounts of cellulase, all with limited success. Cellulosic bioconversion is a complex process and requires the synergistic action of the three enzymatic components consisting of endoglucanases, exoglucanases and β-glucosidases. The co-cultivation of microbes in fermentation can increase the quantity of the desirable components of the cellulase complex. An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology. For instance, cloning and sequencing of the various cellulolytic genes could economize the cellulase production process. Apart from that, metabolic engineering and genomics approaches have great potential for enhancing our understanding of the molecular mechanism of bioconversion of lignocelluloses to value added economically significant products in the future. JIMB 2008: BioEnergy - Special issue.  相似文献   

13.
ABSTRACT

We investigated the use of melatonin to improve fertility and reduce uterine damage caused by torsion of the uterus in pregnant rats. We used 35 pregnant rats at gestational age 18 days. The animals were randomized into five groups. Group 1 was anesthetized only. Group 2 was subjected to experimental uterine torsion of 360° and the torsion was corrected after 6 h. Group 3 was subjected to uterine torsion of 360°, the torsion was corrected after 6 h and melatonin was administered at the time of correction. Group 4 rats were subjected to 360º uterine torsion and melatonin was administered 6 h later at the time of correction. Group 5 was administered melatonin followed by uterine torsion of 360 degrees followed by correction of torsion 6 h later. Samples were obtained from the uterine horns on the day 1 postpartum. We used Bax, Bcl-2 and caspase 3 staining to measure apoptosis in the uterine tissues. The mRNA levels of Rho-associated, coiled-coil containing protein kinases 1 (ROCK1), homeobox D10 (Hox4 HoxD10), TLR4, NFκB1, caveolin 1 (Cav1) heat shock protein 90 alpha (cytosolic), class B member 1 (Hsp90ab1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were determined using quantitative real-time polymerase chain reaction analysis (qRT-PCR). Bax, Bcl-2 and caspase 3 were detected using immunohistochemistry. No difference was observed among groups with respect to abortion, neonatal mortality or congenital abnormalities. Compared to the control group, the mRNA levels of Rock1, Hox4, TLR4, NFκB1, Cav1 and Hsp90 genes were decreased significantly in the study groups; the decrease was greater in groups 3 and 4, which were treated with melatonin. The greatest amount of Bax staining was found in group 1 and the least amount of Bcl-2 staining was found in groups 4 and 5; the greatest amount of caspase 3 staining was found in group 2. Our findings indicate that melatonin reduced uterine torsion related tissue damage and that its application during torsion was more effective than application following removal of torsion.  相似文献   

14.
15.
16.
Exogenously supplied catalase, a peroxisomal enzyme, has been found to be of therapeutic value in ischemic injury. Therefore, we examined the effect of ischemic-reperfusion injury on the structure and function of kidney peroxisomes. Ischemic injury changed the density of peroxisomes from 1.21 g/cm3 (peak I) to a lighter density of 1.14 g/cm3 (peak II). The number of peroxisomes moving from the normal density population (peak I) to a lower density population (peak II) increased with an increase in ischemic injury. Latency experiments indicated both populations of peroxisomes to be of intact peroxisomes. Immunoblot analysis with antibodies against peroxisomal matrix and membrane proteins demonstrated that after 90 min of ischemia a significant number of matrix proteins were lost in the peak II population, suggesting that functions of these peroxisomes may be severally affected. Reperfusion following ischemic injury resulted in loss of peroxisomal matrix proteins in both peaks I and II, suggesting that peroxisomal functions may be drastically compromised. This change in peroxisomal functions is reflected by a significant decrease in peroxisomal catalase activity (35%) and beta-oxidation of lignoceric acid (43%) observed following 90 min of ischemia. The decrease in catalase activity was more pronounced in reperfused kidneys even after a shorter term of ischemic injury. Reperfusion restored the normal peroxisomal beta-oxidation in kidneys exposed up to 60 min of ischemia. However, 90 min of ischemia was irreversible as there was a further decrease in beta-oxidation upon reperfusion. The decrease in catalase activity during ischemia alone was due to the formation of an inactive complex, whereas during reperfusion, following 90 min of ischemia, inactivation and proteolysis or decreased synthesis of catalase contributed equally toward the injury. The observed changes in the structure and function of peroxisomes as a result of ischemic-reperfusion injury and the ubiquitous distribution of peroxisomes underlines the importance of this organelle in the pathophysiology of vascular injury in general.  相似文献   

17.
18.
19.
About 30 years ago, the discovery of the connection between UV radiation and the immune system triggered the field of photoimmunology. In that time, many aspects were studied, and a complex picture emerged. UV absorption results in multi-tiered molecular and cellular UV radiation-induced events, eventually affecting the immune system. The shorter wavelengths of the UV spectrum, i.e. UVB appear to be the most critical players for impairing immune reactions. This review summarizes and discusses UVB radiation-induced effects on the skin, considering the primary efferent molecular events following energy absorption of UVB radiation, ending with the various afferent cellular changes, such as induction of regulatory T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号