首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Phosphodiester antisense oligodeoxynucleotides (ODNs) directed against various domains of the cloned mouse δ receptor DOR-1 reduce δ-opioid receptor binding in vivo and in vitro. The present study examines the stability of an antisense ODN (275 n M ) directed against the δ-opioid receptor and its effect on DOR-1 mRNA in cultured neuroblastoma cells and in vivo. When added to NG108-15 cells, much of the antisense ODN is degraded. However, >1% is intact, associated with cells, and stable for at least 72 h. Northern blot analysis demonstrates that treatment of NG108-15 cells with the antisense ODN reduces the levels of a species of DOR-1 mRNA by ∼25%. Similarly, intrathecal administration of the antisense ODN results in the accumulation of intact ODN within the spinal cord, which is stable for at least 72 h, although the levels of accumulation in vivo are lower than in vitro after either 4 or 72 h. Antisense ODN treatment lowers DOR-1 mRNA levels by ∼25%. The loss of mRNA both in vivo and in vitro corresponds quite well to the decreases in receptor binding previously observed by our laboratory and is consistent with reduction of δ-opioid receptor protein in vitro as determined by western blot with a monoclonal antibody selective for the δ-opioid receptor. In conclusion, these studies indicate that a small, but significant, proportion of ODN is taken up by cells and remains intact for up to 72 h. This appears to be sufficient to down-regulate mRNA levels of δ-opioid receptors and their expression.  相似文献   

2.
Phospholipid hydroperoxide glutathione peroxidase (PhGPx) directly reduces hydroperoxides of phospholipid and cholesterol to their corresponding alcohols. There are two forms of PhGPx: L-PhGPx localizes in mitochondria and S-PhGPx in cytosol. Antisense oligodeoxynucleotides can inhibit specific protein expression. We tested the hypothesis that antisense oligodeoxynucleotides could be designed to inhibit PhGPx expression and thereby sensitize cells to lipid peroxidation induced by singlet oxygen. We chose P4 cells, a cell line established from L-PhGPx cDNA transfected MCF-7 cells, as our cell model. Lipid peroxidation was induced by singlet oxygen generated by Photofrin and visible light. We found that the antisense oligodeoxynucleotide (5' GCCGAGGCTCATCGCGGCGG 3') was effective in suppressing L-PhGPx mRNA, PhGPx protein, and activity. This antisense oligodeoxynucleotide did not interfere with S-PhGPx. When cells were exposed to singlet oxygen, lipid hydroperoxides were produced in the cells. L-PhGPx was able to remove these hydroperoxides; this removal was inhibited by antisense treatment. The inhibition of L-PhGPx by the antisense oligodeoxynucleotides also resulted in increased membrane damage as measured by trypan blue dye exclusion. These data demonstrate that PhGPx expression can be manipulated by antisense techniques.  相似文献   

3.
The completion of the human and mouse genomes has identified at least 20 connexin isomers in this family of intercellular channel proteins. However, there are no specific gap junction blockers or channel-blocking mimetic peptides available for the study of specific connexins. We designed antisense oligodeoxynucleotides that functionally reduce targeted connexin protein expression and can be used to reveal the biological function of individual connexins in vivo. Connexin mRNA was firstly exposed in vitro to deoxyribozymes complementing the sense coding sequence. Those that cleaved the target connexin mRNA in defined regions were used as the basis to design oligodeoxynucleotides to the accessible sites, thus taking into account tertiary mRNA configurations rather than relying on computed predictions. Antisense oligodeoxynucleotides designed to bind to accessible mRNA sites selectively reduced connexin26 and -43 mRNA expression in a corneal epithelium ex vivo model. Connexin43 protein levels were reduced correlating with the knockdown in mRNA and the protein's rapid turnover; protein levels of connexin26 did not alter, supporting lower turnover rates reported for that protein. We show, for the first time, an inexpensive and empirical approach to the preparation of specific and functional antisense oligodeoxynucleotides against known gene targets in the post-genomic era.  相似文献   

4.
Use of antisense nucleic acids to modulate expression of particular genes is a promising approach to the therapy of human papillomavirus type 16 (HPV-16)-associated cervical cancer. Understandably, evaluation of the in vivo performance of synthetic antisense oligodeoxynucleotides (AS-ODNs) or ribozymes is of ultimate importance to development of effective antisense tools. Here we report the use of a bacterial reporter system based on the inhibition of fluorescence resonance energy transfer (FRET) to measure the interaction of AS-ODNs with HPV-16 target nt 410-445, using variants of the green fluorescent protein (GFP). An optimal FRET-producing pair was selected with GFP as the donor and yellow fluorescent protein (YFP) as the acceptor molecule. Hybridization of AS-ODNs with a chimaeric mRNA containing the antisense target site flanked by GFP variants resulted in the inhibition of the FRET effect. Use of different linkers suggested that the amino acid content of the linker has no significant effect on FRET effect. Antisense accessibility, tested by RNaseH assays with phosphorothioated target-specific and mutant AS-ODNs, suggested a specific effect on the chimaeric mRNA. FRET inhibition measurements correlated with the presence of truncated proteins confirming true antisense activity over the target. Therefore, FRET inhibition may be used for the direct measurement of AS-ODNs activity in vivo.  相似文献   

5.
6.
K Y Ling  R R Preston  R Burns  J A Kink  Y Saimi  C Kung 《Proteins》1992,12(4):365-371
Paramecium tetraurelia behavioral mutant cam12 displays a "fast-2" behavioral phenotype: it fails to respond to Na+ stimuli. Electrophysiologically, it lacks a Ca(++)-dependent Na+ current. Genetics and DNA sequencing showed the primary defect of cam12 to be in the calmodulin gene (Kink et al., 1990). To correlate calmodulin structure and function in Paramecium, we elucidated the primary structure of cam12 calmodulin. Peptide sequencing confirmed the two point mutations predicted by the DNA sequence: a glycine-to-glutamate substitution at position 40 and an aspartate-to-asparagine substitution at position 50. Our results further showed that lysine 13 and lysine 115 were methylated normally in cam12. It is likely that the electrophysiological abnormalities of cam12 are a direct reflection of the amino-acid substitutions, as opposed to improper posttranslational modification.  相似文献   

7.
ABSTRACT. When Paramecium tetraurelia expresses the D serotype, detectable by serum tests, high molecular mRNA could be isolated, which corresponds to the molecular mass of the D surface protein. Using this D specific mRNA as a probe for screenings in different genomic libraries a subfamily of five very similar genes was found, named α-51D, γ1-51D, γ2-51D, δ-51D and ε-51D. Each of them is about 8-kb long, they show regions of identity to each other, and there is no evidence that any are defective genes or pseudogenes. Up to now serotype D is the only known serotype showing this phenomenon. Another novel feature is that two of the D isogenes are closely linked. The sequence for the entire coding region of the α-51D gene has been determined, as well as the upstream and downstream noncoding regions. Its deduced amino acid sequence shows the same characteristic cysteine periodicity displayed by all other immobilization antigen (i-ag) genes from Paramecium. However, in contrast to most other such genes, tandem repeats are missing from the 7599-bp long coding region of the α-51D gene. When the sequences of the type 51D genes are compared to each other, the similarity is very high and extends to coding as well as to noncoding regions. Similarity within noncoding regions is usually only observed for allelic i-ag genes. We conclude that the type D genes constitute a family of isogenes that are nonallelic. They contain slightly different consensus sequences with possible functions as regulatory regions.  相似文献   

8.
Cationic porphyrins form stable complexes with oligodeoxynucleotides. To evaluate delivery, we used a 20mer phosphorothioate oligomer (Isis 3521) targeted to the 3'-untranslated region of the PKC-alpha mRNA, and complexed it with porphyrin. The expression of PKC-alpha protein and mRNA in T24 bladder carcinoma cells was reduced by approximately 80 +/- 10% at a concentration of oligomer of 3 microM, and 9 microM porphyrin. The expression of PKC-beta1, -delta and -straightepsilon isoforms was unaffected by this treatment, but elimination of PKC-zeta protein and mRNA were observed. However, treatment with the porphyrin complex of Isis 3522, an oligomer which is directed at the 5' coding region of the PKC-alpha mRNA, was equally effective as Isis 3521 with respect to PKC-alpha, but did not affect PKC-zeta protein or mRNA levels. Since Isis 3521 has an 11-base region of complementarity with the PKC-zeta mRNA, wheras Isis 3522 has only a 4-base region, the effect of Isis 3521 on PKC-zeta protein and mRNA expression may be due to irrelevant cleavage. Depending upon the desired application, this new strategy may offer several advantages over other methods of antisense oligodeoxynucleotide delivery including efficiency, stability, solubility, relatively low toxicity and serum compatibility. Porphyrins may thus be a potentially useful delivery vehicle for antisense therapeutics and/or target validation.  相似文献   

9.
10.
To elucidate the properties of mitogenic nucleic acids, the ability of oligodeoxynucleotides to stimulate thein vitro proliferation of murine lymphocytes was investigated. The compounds tested were a series of oligodeoxynucleotides, synthesized with either phosphodiester or phosphorothioate chemistry and containing (dG) and (dC) alone or together. Among oligodeoxynucleotides tested, phosphorothioates were more active than phosphodiesters and stimulated thymidine incorporation under the same conditions as mitogenic non-mammalian DNA, Mitogenesis was unaffected by depletion of T cells, suggesting B cells as the predominant cell type stimulated. These results indicate that mitogenic nucleic acids need not have an extended polymeric structure and raise the possibility that antisense compounds have immunologic activity, at least in animal models.  相似文献   

11.
Both siRNA and antisense oligodeoxynucleotides (ODNs) inhibit the expression of a complementary gene. In this study, fundamental differences in the considerations for RNA interference and antisense ODNs are reported. In siRNA and antisense ODN databases, positive correlations are observed between the cost to open the mRNA target self-structure and the stability of the duplex to be formed, meaning the sites along the mRNA target with highest potential to form strong duplexes with antisense strands also have the greatest tendency to be involved in pre-existing structure. Efficient siRNA have less stable siRNA–target duplex stability than inefficient siRNA, but the opposite is true for antisense ODNs. It is, therefore, more difficult to avoid target self-structure in antisense ODN design. Self-structure stabilities of oligonucleotide and target correlate to the silencing efficacy of siRNA. Oligonucleotide self-structure correlations to efficacy of antisense ODNs, conversely, are insignificant. Furthermore, self-structure in the target appears to correlate with antisense ODN efficacy, but such that more effective antisense ODNs appear to target mRNA regions with greater self-structure. Therefore, different criteria are suggested for the design of efficient siRNA and antisense ODNs and the design of antisense ODNs is more challenging.  相似文献   

12.
We investigated the inhibition of human interferon-γ (HuIFN-γ) production in cultures of lymphocytes with the use of the antisense strategy. Out of a series of antisense oligodeoxynucleotides (ODN) complementary to different regions of the HuIFN-γ gene, a 16-mer specific for a sequence including the translation initiation codon was the most effective. Here we describe a detailed protocol for the isolation of lymphocytes from buffy coats, the rational design of antisense ODN, and the monitoring of HuIFN-γ production of the antisense ODN-treated cells.  相似文献   

13.
Plasmid-borne DNAs, corresponding to 68-base oligodeoxynucleotides, synthesized in the antisense or sense configuration and based on the nucleotide sequences of various regions of the mouse alpha-globin mRNA, were introduced with the gene for xanthine-guanine phosphoribosyl transferase from E. coli (Ecogpt) into mouse erythroleukemia (MEL) cells by protoplast fusion. Specific inhibition of the synthesis of alpha-globin was observed only in the cells transformed with the plasmids with antisense 68-mers that corresponded to the cap site as well as the site of initiation of translation of alpha-globin mRNA (Oligo-A); Other plasmids with antisense 68-mers that corresponded to the regions of the exon/intron junctions, the individual exons, or the 3' untranslated region were ineffective. This antisense RNA efficiently reduced the production of alpha-globin to 9-18% of the endogenous level after induction with hexylmethylene-bis-acetoamide (HMBA). Moreover, most of the antisense transformants did not show any decrease in the expression of the c-myc gene at the early phases of differentiation of MEL cells. Thus, we propose a hypothesis that the early decline in levels of c-myc mRNA may be independent of and uncoupled from the program of globin synthesis during the differentiation of MEL cells.  相似文献   

14.
To assess the potential role of G-proteins in chemokinesis, Paramecium tetraurelia was pre-incubated with the G-protein modulator pertussis toxin. Pertussis toxin pretreatment significantly reduced Paramecium chemoattraction to sodium acetate and ammonium chloride in T-maze behavioral assays and depressed the frequency of avoidance reactions, indicating that heterotrimeric G-proteins may be involved with the motility response. To determine whether G-proteins exert their effect via the ciliary voltage-sensitive calcium channel, we examined responses of P. tetraurelia to the potent voltage-sensitive calcium channel agonist, deltamethrin. Pertussis toxin preincubation significantly reduced the toxic effects of deltamethrin exposure as determined by survival under depolarizing conditions and reduced the duration of backward swimming episodes in behavioral bioassays. Furthermore, non-hydrolyzable analogs of guanine nucleotides altered deltamethrin-stimulated calcium influx via calcium channels in isolated ciliary vesicles. Heterotrimeric G-protein subunits were subsequently detected in ciliary vesicles of P. tetraurelia by antibodies produced against Galpha and Gbeta subunits, and by 32P-ADP-ribosylation, indicating that proteins of the appropriate molecular weight are the target of pertussis toxin in these vesicles. These findings provide additional evidence that heterotrimeric G-proteins are associated with ciliary vesicles and that they play a role in the modulation of swimming behavior and the toxic action of deltamethrin in Paramecium.  相似文献   

15.
R. R. Preston  C. Kung 《Genetics》1994,137(3):759-769
Four mutant strains of Paramecium tetraurelia with a reduced ability to respond behaviorally to Mg(2+) have been isolated. Voltage-clamp analyses showed that their Mg(2+) insensitivity is associated with a reduced Ca(2+) -dependent Mg(2+) current. The four mutants, which have been dubbed ``eccentric,' result from recessive mutations in two unlinked loci, xntA and xntB. Further analysis of xntA(1) showed it to be unlinked to any of the behavioral mutants of P. tetraurelia described previously, but it is allelic to d4-521, a ``K(+)-resistant' strain, and d4-596, a ``Ba(2+)-shy' mutant. The varied pleiotropic effects of xntA(1), which include increased resistance to Ni(2+) and Zn(2+) poisoning, suggest that the locus encodes a central regulator of cell function in Paramecium.  相似文献   

16.
In the ciliate Paramecium tetraurelia, 3',5'-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation.  相似文献   

17.
The ciliate protozoan Paramecium tetraurelia produces secretory granules (trichocysts) which release needle-like structures composed of small, acidic proteins. Using antibodies against isolated chromogranin A (CGA) and against trichocyst proteins, we found cross-reactive proteins in chromaffin granules and trichocysts. Four independently derived sera against isolated CGA stained bands of the Mr 15,000-25,000 family of trichocyst proteins on immunoblots. A positive response was also obtained with antiserum against chemically synthesized peptides (PL26 and GE25) corresponding to defined regions of the CGA amino acid sequence. In extracts of whole Paramecium, larger proteins (Mr 53,000 and 49,000) also reacted with antibodies against CGA and the related synthetic peptides. These larger proteins may represent unprocessed precursors to the smaller proteins of mature trichocysts. Antiserum to trichocysts recognized CGA in chromaffin granule lysates. Further evidence of a Paramecium protein related to CGA was provided by hybridization of Paramecium mRNA with cloned cDNA for bovine CGA. Our results suggest striking conservation in evolution of CGA-like proteins that may play some role, as yet unknown, in secretion.  相似文献   

18.
Oligodeoxynucleotides 18 nucleotides in length having sequences complementary to regions spanning the initiation codon regions of ornithine decarboyxlase or S-adenosylmethionine decarboxylase mRNAs were tested for their ability to inhibit translation of these mRNAs. In reticulocyte lysates, a strong and dose dependent reduction of ornithine decarboyxlase synthesis in response to mRNA from D-R L1210 cells was brought about by 5-AAAGCT GCTCATGGTTCT-3 which is complementary to the sequence from - 6 to + 12 of the mRNA sequence but there was no inhibition by 5-TGCAGCTTCCATCACCGT-3. Conversely, the latter oligodeoxynucleotide which is complementary to the sequence from – 6 to + 12 of the mRNA of S-adenosyl methionine decarboxylase was a strong inhibitor of the synthesis of this enzyme in response to rat prostate mRNA and the antisense sequence from ornithine decarboxylase had no effect. The translation of ornithine decarboxylase mRNA in a wheat germ system was inhibited by the antisense oligodeoxynucleotide at much lower concentration than those needed in the reticulocyte lysate suggesting that degradation of the hybrid by ribonuclease H may be an important factor in this inhibition. These results indicate that such oligonucleotides may be useful to regulate cellular polyamine levels and as probes to study control of mRNA translation.Abbreviations ODC ornithine decarboxylase - AdoMetDC S-adenosylmethionine decarboxylase - DFMO difluoromethylornithine  相似文献   

19.
C Crum  J D Johnson  A Nelson    D Roth 《Nucleic acids research》1988,16(10):4569-4581
Two different "antisense" oligodeoxynucleotides and their RNA analogues, each complementary to non-overlapping sequences of 51 bases near the 5' end of TMV RNA, inhibit in vitro translation of the genomic RNA in a rabbit reticulocyte lysate. Inhibition is dependent upon complementarity, concentration, and hybridization of the oligomers with TMV RNA. Inhibition is observed at molar ratios of TMV RNA to antisense oligomers as low as 1:1.5. A plateau of inhibition at which 10-25% of the control signal remains is achieved by molar ratios of TMV RNA:antisense DNA or RNA greater than or equal to 1:15. The extent of inhibition is not increased by the simultaneous presence of both complementary fragments. Oligodeoxynucleotides and their RNA analogues identical to the same regions of TMV RNA have no direct effect on translation, however, they can block inhibition by the antisense fragments. Translation of BMV RNA is not affected by any of the oligodeoxynucleotides. Polyacrylamide gel electrophoresis shows translation of TMV p126 is selectively inhibited. We conclude that the observed inhibition of translation is due to direct interference with ribosome function.  相似文献   

20.
目的:研究比较神经纤毛蛋白1(NRP-1)反义寡核苷酸(ASODN)与血管内皮生长因子受体2(VEGFR-2)反义寡核苷酸(ASODN)对人胃癌SGC7901细胞增殖活性及凋亡水平的影响。 方法:分别及同时将不同浓度经硫代磷酸化修饰的NRP-1 ASODN 和 VEGFR-2 ASODN 转染入人胃癌SGC7901细胞,逆转录-聚合酶链反应(RT-PCR)检测NRP-1基因和VEGFR-2 基因mRNA的转录水平;MTT比色法测量细胞的增殖活性;流式细胞仪测量细胞的凋亡水平。 结果:转染NRP-1 ASODN和VEGFR-2 ASODN后,人胃癌SGC7901细胞NRP-1基因和VEGFR-2 基因mRNA的转录水平均出现降低;NRP-1 ASODN和VEGFR-2 ASODN对SGC7901细胞有明显抑制增殖和促进凋亡的作用,且随着ASODN浓度升高而增强;分别转染时其作用无显著差别,联合转染时其作用明显增强。结论:NRP-1 ASODN和VEGFR-2 ASODN可抑制人胃癌SGC7901细胞 NRP-1基因和VEGFR-2 基因mRNA的转录水平及细胞增殖活性,促进细胞凋亡;与分别转染相比,两者联合转染作用明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号