共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here genetic experiments with a series of Chinese hamster cell mutants defective in oxidative energy metabolism. The mutations were all shown to be recessive in intraspecies hybrids. Thirty-five mutants were sorted into eight complementation groups, but one of these mutants failed to complement representatives of two distinct complementation groups. The possibility was raised that this is a cell carrying two mutations or a deletion. Because of the greatly different frequencies with which such mutants could be isolated from two different Chinese hamster cell lines, CCL16 (DON) and V79, the stability of representatives from each cell line was examined, and it was found that revertants could be obtained after treatment with mutagens, while spontaneous revertants appeared at unmeasurable or extremely low frequencies, with one exception. The mutant with a very noticeable frequency of spontaneous reversion was defective in mitochondrial protein synthesis, and the question arose whether the mutation was on the mitochondrial genome. A detailed fluctuation analysis of reversion rate and comparison with rates for other mutations was consistent with a nuclear mutation. This conclusion was supported by experiments involving fusions with cytoplasts. 相似文献
2.
We have previously classified 35 of our respiration-deficient mutants into seven complementation groups and one "overlapping" mutant which does not complement mutants from groups I and II. In this paper we report on the biochemical characterization of representatives of complementation groups I, II, VII, and the "overlapping" mutant. We show that these mutants all have a defect in complex I of the electron-transport chain. The general features of these mutants are: (1) a low rate of O2 consumption in whole cells; (2) a low rate of release of 14CO2 from [2-14C] pyruvate, [1-14C] pyruvate, and [3-14C] beta-hydroxybutyrate; (3) a low rate of release of 14CO2 from [5-14C] glutamate and [1-14C] glutamate in mutants from groups II, VII, and the "overlapping" mutant, whereas a significant amount of 14CO2 is released in mutants from group I; (4) a substantial rate of release of 14CO2 from [U-14C] asparate; (5) in isolated mitochondria, succinate and alpha-glycerol phosphate stimulate O2 consumption whereas substrates which generate NADH, such as malate, do not; and (6) there is little or no rotenone-sensitive NADH oxidase activity in isolated mitochondria. 相似文献
3.
Isolation and characterization of temperature-sensitive mutants in a Chinese hamster cell line 总被引:2,自引:0,他引:2
A replica plating method was used for the isolation of temperature-sensitive (ts) mutants after treatment of Chinese hamster cells with ethyl methanesulfonate (EMS). No significant increase in ts mutants was found after this treatment. The limitations and advantages of the replicating procedure to detect such differences, as well as an alternative method, are discussed.Mutants isolated were classified into two general groups—density-dependent and clear-cut—as measured by survival at low and high cell densities at the restrictive temperature. The density-dependent mutants may be truly “leaky”, losing a metabolite to the medium at an excessive rate at the restrictive temperature. On the other hand, the one clear-cut mutant analyzed extensively dies at a rate determined by its ability to utilize one or more components from the medium. It shows an inverse density relationship in rate of death, as inferred from rates of macromolecular synthesis, as opposed to its growth rate at the permissive temperature. 相似文献
4.
Identification and characterization of a third complementation group of emetine-resistant Chinese hamster cell mutants.
下载免费PDF全文

We have isolated emetine-resistant cell lines from Chinese hamster peritoneal fibroblasts and have shown that they represent a third distinct class or complementation group of emetine-resistant mutants, as determined by three different criteria. These mutants, like those belonging to the two other complementation groups we have previously defined, which were isolated from Chinese hamster lung and Chinese hamster ovary cells, have alterations that directly affect the protein biosynthetic machinery. So far, there is absolute cell line specificity with respect to the three complementation groups, in that all the emetine-resistant mutants we have isolated from Chinese hamster lung cells belong to one complementation group, all those we have isolated from Chinese hamster ovary cells belong to a second complementation group, and all those isolated from Chinese hamster peritoneal cells belong to a third complementation group. Thus, in cultured Chinese hamster cells, mutations in at least three different loci, designated emtA, emtB, and emtC, encoding for different components of the protein biosynthetic machinery, can give rise to the emetine-resistant phenotype. 相似文献
5.
K Hasegawa Y Anraku M Kasahara Y Akamatsu M Nishijima 《Biochimica et biophysica acta》1990,1051(3):221-229
Cultured Chinese hamster ovary (CHO) cells possess an insulin-sensitive facilitated diffusion system for glucose transport. Mutant clones of CHO cells defective in glucose transport were obtained by repeating the selection procedure, which involved mutagenesis with ethyl methanesulfonate, radiation suicide with tritiated 2-deoxy-D-glucose, the polyester replica technique and in situ autoradiographic assaying for glucose accumulation. On the first selection, we obtained mutants exhibiting about half the glucose uptake activity of parental CHO-K1 cells and half the amount of a glucose transporter, the amount of which was determined by immunoblotting with an antibody to the human erythrocyte glucose transporter. The second selection, starting from one of the mutants obtained in the first-step selection, yielded a strain, GTS-31, in which both glucose uptake activity and the quantity of the glucose transporter were 10-20% of the levels in CHO-K1 cells, whereas the responsiveness of glucose transport to insulin, and the activities of leucine uptake and several glycolytic enzymes remained unchanged. GTS-31 cells grew slower than CHO-K1 cells at both 33 and 40 degrees C, and in a medium containing a low concentration of glucose (0.1 mM), the mutant cells lost the ability to form colonies. All the three spontaneous GTS-31 cell revertants, which were isolated by growing the mutant cells in medium containing 0.1 mM glucose, exhibited about half the glucose uptake activity and about half the amount of glucose transporter, as compared to in CHO-K1 cells, these characteristics being similar to those of the first-step mutant. These results indicate that the decrease in glucose uptake activity in strain GTS-31 is due to a mutation which induces a reduction in the amount of the glucose transporter, providing genetic evidence that the glucose transporter functions as a major route for glucose entry into CHO-K1 cells. 相似文献
6.
Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes 总被引:6,自引:0,他引:6
下载免费PDF全文

We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly. 相似文献
7.
8.
Nine asparagine-requiring mutants were isolated in culture from the Don line of Chinese hamster cells. Investigation of the asparagine requirements of the mutants, the effect of asparagine deprivation on macromolecular synthesis, and the rates of reversion to asparagine independence indicated that there were differences between the mutant clones. Biochemical analysis revealed that the defect in the mutants was due to a deficiency of the enzyme asparagine synthetase, and that the enzyme activity in the mutants and Asn+ revertants obtained from them was not influenced by the concentration of asparagine in the growth medium. Complementation analysis by Sendai virusmediated cell fusion indicated that the lesion behaved as a recessive trait, and was probably located in the same gene in all the mutant clones. 相似文献
9.
Adhesion and detachment characteristics of Chinese hamster cell membrane mutants 总被引:1,自引:0,他引:1
下载免费PDF全文

R L Juliano 《The Journal of cell biology》1978,76(1):43-49
We have investigated the adhesion and detachment properties of wild-type Chinese hamster cells and of variant lines, which possess altered cell surface glycoproteins as detected by galactose oxidase-[3H]borohydride labeling. The wild-type and variant lines tested all adhered to protein-coated glass surfaces at the same rate; however, the variant cells differed from wild type and from each other in terms of the ease with which they were detached by trypsinization. Morphological differences between the various lines were also apparent. Our results suggest that the carbohydrate moieties of the terminal region of surface glycoproteins are not directly involved in the initial phase of cell-to-substratum attachment, but that they may modulate the proteolytic susceptibility of surface components which are involved in cell detachment. 相似文献
10.
Isolation and characterization of Chinese hamster ovary cell mutants defective in intracellular low density lipoprotein-cholesterol trafficking 总被引:7,自引:1,他引:7
下载免费PDF全文

This paper reports the isolation and characterization of Chinese hamster ovary cell mutants defective in low density lipoprotein (LDL)-cholesterol trafficking. The parental cell line was 25-RA, which possesses LDL receptors and various cholesterogenic enzyme activities that are partially resistant to down regulation by exogenous sterols (Chang, T. Y., and J. S. Limanek. 1980. J. Biol. Chem. 255:7787-7795). Because these cells accumulate a large amount of intracellular cholesteryl ester when grown in medium containing 10% fetal calf serum, mutagenized populations of 25-RA cells were grown in the presence of a specific inhibitor of acyl-coenzyme A: cholesterol acyltransferase (ACAT), which depleted their cholesteryl ester stores. Without this cholesterol ester storage, 99% of 25-RA cells die after 5-d growth in cholesterol starvation medium, while the mutant cells, which accumulate free cholesterol intracellularly, survived. In two mutant clones chosen for characterization, activation of cholesteryl ester synthesis by LDL was markedly reduced in the mutant cells compared with 25-RA cells. This lack of activation of cholesterol ester synthesis in the mutant cells could not be explained by defective uptake and/or processing of LDL or by a decreased amount of ACAT, as determined by in vitro enzyme activity. Mutant cells grown in the presence of LDL contain numerous cytosolic particles that stain intensely with the fluorescent compound acridine orange, suggesting that they are acidic. The particles are also stained with filipin, a cholesterol-specific fluorescent dye. Indirect immunofluorescence with a monoclonal antibody specific for a lysosomal/endosomal fraction revealed a staining pattern that colocalized with the filipin signal. The mutant phenotype was recessive. The available evidence indicates that the mutant cells can take up and process LDL normally, but the hydrolyzed cholesterol accumulates in an acidic compartment, probably the lysosomes, where it can not be transported to its normal intracellular destinations. 相似文献
11.
Isolation and characterization of Chinese hamster ovary cell mutants defective in amino acid transport System L 总被引:1,自引:0,他引:1
E J Collarini G S Campbell D L Oxender 《The Journal of biological chemistry》1989,264(27):15856-15862
The Chinese hamster ovary cell line CHO-tsH1 is a temperature-sensitive leucyl-tRNA synthetase mutant that shows temperature-dependent regulation of the amino acid transport responsible for accumulating leucine, System L. At nonpermissive temperatures, CHO-tsH1 cells are unable to grow because they are unable to incorporate leucine into protein. As a result, System L activity is increased. We have isolated mutants from CHO-tsH1 that have constitutively de-repressed System L activity. These mutants are temperature-resistant as a result of increased intracellular steady-state accumulations of System L-related amino acids, which compensates for the defective synthetase activity. In this study, we have subjected one of these regulatory mutant cell lines (C11B6) to a tritium-suicide selection, in which L-[3H]leucine was used as a toxic substrate. Three mutant cell lines, C4B4, C5D9, and C9D9 that showed reduced System L transport activity were isolated. The decreases in the initial rates of System L transport activity lead to reduced steady-state accumulations of System L-related amino acids. In contrast to the parental cell line, C11B6, the transport-defective mutants are temperature-sensitive because the reduced intracellular pool of leucine can no longer compensate for the defective synthetase activity. 相似文献
12.
By means of an in situ colony autoradiographic assay for the incorporation of [14C]inositol into the trichloroacetic acid-insoluble fraction, we have isolated a mutant of cultured Chinese hamster ovary cells defective in inositol transport, named mutant 648. Through comparison of the inositol uptake activity of 648 cells with that of the parental cells with various concentrations of inositol and sodium, it has been demonstrated that Chinese hamster ovary cells possess a sodium-dependent transport system for inositol, and that 648 cells lack this system. The sodium-dependent uptake is inhibited by 2,4-dinitrophenol and ouabain, and the intracellular concentration of inositol exceeds the extracellular concentration during the uptake period, indicating that it is active transport, at least partially driven by the sodium gradient generated by Na+,K(+)-ATPase. The apparent Km for inositol has been estimated to be 12.0 microM. It is inhibited by hyperglycemic concentration of D-glucose in a competitive fashion. 相似文献
13.
Isolation and characterization of nitrogen mustard-sensitive mutants of Chinese hamster ovary cells 总被引:2,自引:0,他引:2
R E Meyn D Murray S C vanAnkeren G S Bernard D N Mellard M L Hobbs 《Mutation research》1991,254(2):161-165
Three nitrogen mustard-sensitive lines of Chinese hamster ovary cells were isolated from mutagenized cultures using the procedure of Thompson et al. (1980). The lines, designated NM1, NM2 and NM3, were 2.1-, 17- and 6.8-fold more sensitive to nitrogen mustard, respectively, than their parent, wild-type, line as determined by the dose required to kill 90% of the cells, IC90. Patterns of cross-sensitivity to other DNA-damaging agents including ultraviolet light, cis-diamminedichloroplatinum, and other alkylating agents were determined for each line. Analysis of these results suggests that the phenotypes of the mutant lines are different from those lines reported previously. 相似文献
14.
Isolation and characterization of tunicamycin resistant mutants from Chinese hamster ovary cells 总被引:4,自引:0,他引:4
Stable clones selected for resistance to tunicamycin (TM) have been isolated from Chinese Hamster Ovary (CHO) cells. The TMR phenotype is stable for more than nine months in the absence of the drug. The morphology of TMR mutant varies from epitheloid to abnormally elongate. The mutants do not display cross-resistance for ConA but are slightly cross-resistant to PHA. Biochemically labeled membrane proteins and glycoprotein of Vesicular stomatitis virus (VSV) grown in the TMR mutants revealed that the incorporation of radioactive glucosamine was markedly reduced in the mutants. The results indicate that TMR cells are a novel type of membrane mutant. 相似文献
15.
Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A:cholesterol acyltransferase activity 总被引:8,自引:0,他引:8
A protocol has been developed for isolating cholesterol ester-deficient cells from the Chinese hamster ovary cell clone 25-RA. This cell line previously was shown to be partially resistant to suppression of cholesterogenic enzyme activities by 25-hydroxycholesterol and to accumulate a large amount of intracellular cholesterol ester when grown in medium containing 10% fetal calf serum (Chang, T. Y., and Limanek, J. S. (1980) J. Biol. Chem. 255, 7787-7795). The higher cholesterol ester content of 25-RA is due to an increase in the rate of cholesterol biosynthesis and low density lipoprotein receptor activity compared to wild-type Chinese hamster ovary cells, and not due to an abnormal acyl-CoA:cholesterol acyltransferase enzyme. The procedure to isolate cholesterol ester-deficient mutants utilizes amphotericin B, a polyene antibiotic known to bind to cholesterol and to form pore complexes in membranes. After incubation in cholesterol-free medium plus an inhibitor of endogenous cholesterol biosynthesis, 25-RA cells were found to be 50-500 times more sensitive to amphotericin B killing than were mutant cells containing reduced amounts of cholesterol ester. Twelve amphotericin B-resistant mutants were isolated which retained the 25-hydroxycholesterol-resistant phenotype. These mutants did not exhibit the perinuclear lipid droplets characteristic of 25-RA cells, and lipid analysis revealed a large (up to 40-fold) reduction in cellular cholesterol ester. The acyl-CoA:cholesterol acyltransferase activities of these cholesterol ester-deficient mutants were markedly lower than 25-RA when assayed in intact cells or in an in vitro reconstitution assay. The tightest mutant characterized, AC29, was found to have less than 1% of the parental acyl-CoA:cholesterol acyltransferase activity. These mutants all have reduced rates of sterol synthesis and lower low density lipoprotein receptor activity compared to 25-RA, probably as a consequence of their reduced enzyme activities. Cell fusion experiments revealed that the phenotypes of all the mutants examined are not dominant and that the mutants all belong to the same complementation group. We conclude that these mutants contain a lesion in the gene encoding acyl-CoA:cholesterol acyltransferase or in a gene encoding a factor needed for enzyme production. 相似文献
16.
Molecular and biochemical characterization of new X-ray-sensitive hamster cell mutants defective in Ku80. 总被引:2,自引:0,他引:2
下载免费PDF全文

A Errami N J Finnie B Morolli S P Jackson P H Lohman M Z Zdzienicka 《Nucleic acids research》1998,26(19):4332-4338
Ku, a heterodimer of approximately 70 and approximately 80 kDa subunits, is a nuclear protein that binds to double-stranded DNA ends and is a component of the DNA-dependent protein kinase (DNA-PK). Cell lines defective in Ku80 belong to group XRCC5 of ionizing radiation-sensitive mutants. Five new independent Chinese hamster cell mutants, XR-V10B, XR-V11B, XR-V12B, XR-V13B and XR-V16B, that belong to this group were isolated. To shed light on the nature of the defect in Ku80, the molecular and biochemical characteristics of these mutants were examined. All mutants, except XR-V12B, express Ku80 mRNA, but no Ku80 protein could clearly be detected by immunoblot analysis in any of them. DNA sequence analysis of the Ku80 cDNA from these mutants showed a deletion of 252 bp in XR-V10B; a 6 bp deletion that results in a new amino acid residue at position 107 and the loss of two amino acid residues at positions 108 and 109 in XR-V11B; a missense mutation resulting in a substitution of Cys for Tyr at position 114 in XR-V13B; and two missense mutations in XR-V16B, resulting in a substitution of Met for Val at position 331 and Arg for Gly at position 354. All these mutations cause a similar, 5-7-fold, increase in X-ray sensitivity in comparison to wild-type cells, and a complete lack of DNA-end binding and DNA-PK activities. This indicates that all these mutations lead to loss of the Ku80 function due to instability of the defective protein. 相似文献
17.
Purified membranes from surface-labelled phytohemagglutinin-resistant (Pha(R) and wild-type chinese hamster ovary cells have been analysed by sodium dodecyl sulphate gel electrophoresis. Gel patterns were compared for cells labelled via galactose oxidase and B-3H4 or lactoperoxidase and radioactive iodide. The results suggest that Pha-R cells are altered in the carbohydrate portion of a number of their membrane glycoproteins. 相似文献
18.
Yanago E Hiromasa T Matsumura T Kinoshita N Fujiki Y 《Biochemical and biophysical research communications》2002,293(1):225-230
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting signal 2 (PTS2)-tagged enhanced green fluorescent protein (EGFP). From mutagenized TKaEG2 cells, the wild-type CHO-K1 stably expressing rat Pex2p and PTS2-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of PTS2-EGFP. Of six mutant cell clones two, ZPEG227 and ZPEG231, showed cytosolic PTS2-EGFP, indicative of impaired PTS2 import, and numerous PTS1-positive particles. PEX7 expression restored the impaired PTS2 import in both mutants. Cell fusion with fibroblasts from a patient with PEX7-defective rhizomelic chondrodysplasia punctata did not complement PTS2 import defect of ZPEG227 and ZPEG231, confirming that these two are pex7 mutants. Mutation analysis of PEX7 by reverse transriptase (RT)-PCR indicated that ZPEG227-allele carried an inactivating nonsense mutation, Trp158Ter. Therefore, ZPEG227 is a pex7 mutant possessing a newly identified mutation in mammalian pex7 cell lines. 相似文献
19.
Summary Isolation and characterization of Chinese hamster ovary cell mutants resistant to different DNA polymerase ase inhibitors (aphidicolin, ara-A and ara-C) have been described. A particular mutant (JK3-1-2A) characterized in detail was found to grow and synthesize DNA in medium containing an amount of aphidicolin tenfold greater than that which completely inhibited the growth and the DNA synthesis of the wild-type cells. An almost twofold increase in the specific activity of the DNA polymerase was seen in this mutant. The mutant DNA polymerase showed altered aphidicolin inhibition kinetics of dCMP incorporation; the apparent K
m for dCTP and the apparent K
i for aphidicolin were increased in the mutant. These alterations in the kinetic parameters were, however, abolished upon further purification of the enzyme. Ara-CTP was found to act as a competitive inhibitor of the dCMP incorporation by both the wild type and mutant enzymes. In contrast, the effect of aphidicolin on dCMP incorporation was either competitive (wild-type enzymes) or noncompetitive (mutant enzyme). The data presented showed that the sites of action for aphidicolin and ara-CTP were distinct; likewise the dCTP binding site appeared to be separate from other dNTP(s) binding sites. The drug resistance of the mutant was inherited as a dominant trait.Abbreviations ara-A
9--d-arabinofuranosyl adenine
- ara-C
1--d-arabinofuranosyl cytosine
- aph
aphidicolin 相似文献
20.
Biochemical and genetic characterization of three hamster cell mutants resistant to diphtheria toxin 总被引:2,自引:0,他引:2
下载免费PDF全文

RK Draper D Chin D Eurey-Owens IE Scheffler MI Simon 《The Journal of cell biology》1979,83(1):116-125
We describe here three different hamster cell mutants which are resistant to diphtheria toxin and which provide models for investigating some of the functions required by the toxin inactivates elongation factor 2 (EF-2). Cell-free extracts from mutants Dtx(r)-3 was codominant. The evidence suggests that the codominant phenotype is the result of a mutation in a gene coding for EF-2. The recessive phenotype might arise by alteration of an enzyme which modifies the structure of EF-2 so that it becomes a substrate for reaction with the toxin. Another mutant, Dtx(r)-2, contained EF-2 that was sensitive to the toxin and this phenotype was recessive. Pseudomonas aeruginosa exotoxin is known to inactivate EF-2 as does diphtheria toxin and we tested the mutants for cross-resistance to pseudomonas exotoxin. Dtx(r)-1 and Dtx(r)-3 were cross-resistant while Dtx(r)-2 was not. It is known that diphtheria toxin does not penetrate to the cytoplasm of mouse cells and that these cell have a naturally occurring phenotype of diphtheria toxin resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance of the hybrid cells to diphtheria toxin. Intraspecies hybrids containing the genome of mutants Dtx(r)-1 and Dtx(r)-3 had some resistance while those formed with Dtx(r)-2 were as sensitive as hybrids derived from fusions between wild-type hamster cells and mouse 3T3 cells. 相似文献