首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, Mg2+ -dependent, HCO3- -activated ATPase in the brush border and carbonic anhydrase in the cytoplasm of rat duodenal and jejunal mucosa decreased after adrenalectomy. Both enzyme activities increased to near normal levels 4 h after i.p. injection of aldosterone (40 micrograms/kg). These results suggest the possibility that both enzymes in the small intestinal mucosa may be mediators of the action of aldosterone. In the present studies, therefore, the effects of actinomycin D (500 micrograms/kg, i.p.), spironolactone (50 mg/kg, s.c.) and potassium canrenoate (50 mg/kg, s.c.) on aldosterone-induced activation of both enzymes in the upper small intestinal mucosa from adrenalectomized rats were examined to clarify the mechanism of action of aldosterone in enzyme levels. Actinomycin D inhibited carbonic anhydrase activity in small intestinal mucosa from normal rats 4 h after i.p. injection but had no effect on ATPase activity, while two other drugs had no effect on either enzyme activity in normal rats up to 4 h later. Pretreatment with these 3 drugs 1 h before aldosterone administration (40 micrograms/kg, i.p.) to adrenalectomized rats blocked the aldosterone-induced activation of ATPase and carbonic anhydrase in the upper small intestine. On the other hand, adrenalectomy and administration of aldosterone and its antagonists, alone or in combination, had no effect on kidney enzyme activities. These results confirm that Mg2+ -HCO3- -ATPase and carbonic anhydrase are mediators of the action of aldosterone in the upper small intestinal mucosa.  相似文献   

2.
The possible role of Mg2+-HCO3-ATPase, carbonic anhydrase and several other enzymes in rat intestinal mucosa as mediators of the action of aldosterone has been examined. The small-intestinal tract was cut into seven segments, 15 cm each in length and the mucosa was scraped off, homogenized in 50 mM D-mannitol-2 mM Tris-HCl buffer (pH 7.1), differentially fractionated and a crude brush border was obtained. The mucosa from the colon and rectum was combined and used as the large-intestinal sample. Five days after the adrenalectomy, activities of brush border Mg2+-HCO3-ATPase and supernatant carbonic anhydrase from the upper small intestine decreased to about 60 and 40% of normal values, respectively. Activities of Na+-K+-ATPase, beta-glycerophosphatase and succinate dehydrogenase were all decreased. Two and 4 h after i.p. injection of aldosterone (40 micrograms/kg) to adrenalectomized rats, all enzyme activities increased except for Na+-K+-ATPase in the upper small intestine. In contrast, Mg2+-HCO-3-ATPase and carbonic anhydrase activities were unchanged 3 h after i.p. injection of dexamethasone (200 micrograms and 1 mg/kg). The activation of both Mg2+-HCO3-ATPase and carbonic anhydrase by a single injection of aldosterone was blocked by pretreatment with cycloheximide (1 mg/kg). These results suggest that aldosterone may induce the synthesis of enzyme proteins in the intestinal mucosa.  相似文献   

3.
4.
Effects of the s.c. administration of various doses of estradiol propionate (E.P.; 25-500 micrograms/kg) on the activities of carbonic anhydrase (CA), Mg(2+)-dependent ATPase and Mg(2+)-dependent, HCO3(-)-stimulated ATPase (Mg(2+)-HCO3(-)-ATPase) in rat duodenal mucosa and kidney cortex, and on body weight, organ weight and serum concentrations of testosterone and estradiol-17 beta, were examined in adult male, female, testectomized and ovariectomized rats. In normal male rats, activities of cytosol CA and brush border Mg(2+)-HCO3(-)-ATPase in the kidney were increased in a dose-dependent manner and reached 1.6- and 2-fold of controls, respectively, after consecutive administration (daily for 7 days) of 500 micrograms E.P. with no changes in either enzyme activities in duodenal mucosa. The positive correlations (P less than 0.01) were observed by linear regression analysis between serum concentration of estradiol-17 beta and kidney cytosol CA or kidney brush border Mg(2+)-HCO3(-)-ATPase activities. In normal female rats, activities of cytosol CA and brush border Mg(2+)-HCO3(-)-ATPase in the duodenal mucosa, and brush border Mg(2+)-HCO3(-)-ATPase activity in the kidney were increased by E.P. administration (100 and 500 micrograms/kg, daily for 7 days), however, kidney cytosol CA activity did not change by any dosage. Behavior of a part of both enzymes to E.P. in testectomized rats was altered almost in the same way to that observed in normal female rats and vice versa in ovariectomized rats. Body weight was decreased, in general, by consecutive administration of E.P. in a dose-dependent manner, and kidney weight was increased by E.P. in both male and female rats.  相似文献   

5.
6.
1. The kinetic and physicochemical properties of the calcium-pumping protein, (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) were studied in ghost membranes isolated from porcine erythrocytes. 2. The membrane-bound enzyme in situ has a specific activity of 3.12 +/- 0.08 micron/mg protein/hr and a Vmax of 3.47 +/- 0.21 mumol/mg protein/hr in the absence of calmodulin. 3. Its activity was stimulated by calmodulin about 5-fold. The enzyme is also highly sensitive to inhibition by vanadate (Ki = 1.6 +/- 0.2 microM). 4. Calmodulin also affects the pH- and Ca2+-sensitivity of the enzyme. The optimum pH, in the presence of calmodulin, is 7.5 and the optimum temperature is 38 degrees C with an activation energy of 11.9 kcal/mol.  相似文献   

7.
In corneal endothelium, there is evidence for basolateral entry of HCO(3)(-) into corneal endothelial cells via Na(+)-HCO(3)(-) cotransporter (NBC) proteins and for net HCO(3)(-) flux from the basolateral to the apical side. However, how HCO(3)(-) exits the cells through the apical membrane is unclear. We determined that cultured corneal endothelial cells transport HCO(3)(-) similarly to fresh tissue. In addition, Cl(-) channel inhibitors decreased fluid transport by at most 16%, and inhibition of membrane-bound carbonic anhydrase IV by benzolamide or dextran-bound sulfonamide decreased fluid transport by at most 29%. Therefore, more than half of the fluid transport cannot be accounted for by anion transport through apical Cl(-) channels, CO(2) diffusion across the apical membrane, or a combination of these two mechanisms. However, immunocytochemistry using optical sectioning by confocal microscopy and cryosections revealed the presence of NBC transporters in both the basolateral and apical cell membranes of cultured bovine corneal endothelial cells and freshly isolated rabbit endothelia. This newly detected presence of an apical NBC transporter is consistent with its being the missing mechanism sought. We discuss discrepancies with other reports and provide a model that accounts for the experimental observations by assuming different stoichiometries of the NBC transport proteins at the basolateral and apical sides of the cells. Such functional differences might arise either from the expression of different isoforms or from regulatory factors affecting the stoichiometry of a single isoform.  相似文献   

8.
The distribution of carbonic anhydrase, K+-ATPase and K+-phosphatase in the subcellular fractions of gastric mucosa was studied. It was found that 90% of carbonic anhydrase are localized in the hyaloplasm, whereas K+-ATPase and K+-phosphatase are predominantly localized in the microsomal fraction. Subfractionation of the microsomal fraction in a sucrose density gradient showed that the membrane-bound carbonic anhydrase (5% of total content) and K+-ATPase are bound to various cell organelles. It is concluded that carbonic anhydrase functions as an intracellular pH-stat and is not directly involved in proton generation by the cell.  相似文献   

9.
Initial Fe3+ uptake rates by mouse intestinal fragments were determined in vitro. Uptake was dependent primarily on the Fe3+-nitrilotriacetate complex concentration. Addition of Ca2+ and Mg2+ to the incubation medium had only small effects on the Fe3+ uptake rate. Duodenal fragments from hypoxic animals showed enhanced uptake of Fe3+; this increase was more pronounced with a divalent cation-free medium. Ca2+ markedly diminished the Fe3+ uptake by mucosa from hypoxic mice; Mg2+ had no appreciable effect. Distal ileal fragments exhibited lower uptake rates compared to the duodenum, but were more sensitive to the effects of added Ca2+. The ileal fragments did not show an adaptive response of Fe3+ uptake to hypoxia. These results suggest the existence of more than one pathway for mucosal Fe3+ uptake. One pathway, sensitive to Ca2+ and not stimulated by hypoxia, may be present in the duodenum and ileum. A second pathway, inhibited by Ca2+ and exhibiting an adaptive response to hypoxia, occurs only in the duodenum. This latter pathway is more sensitive to the effects of metabolic inhibitors.  相似文献   

10.
Amiodarone hydrochloride is a diiodinated antiarrhythmic agent widely used in the treatment of cardiac disorders. With the increasing use of amiodarone, several untoward effects have been recognized and neuropathy following amiodarone therapy has recently been reported. The present studies were carried out to study the effect of amiodarone on rat brain synaptosomal ATPases in an effort to understand its mechanism of action. Na+, K+-ATPase and oligomycin sensitive Mg2+ ATPase activities were inhibited by amiodarone in a concentration dependent manner with IC50 values of 50 microM and 10 microM respectively. [3H]ouabain binding was also decreased in a concentration dependent manner with an IC50 value of 12 microM, and 50 microM amiodarone totally inhibited [3H]ouabain binding. Kinetics of [3H]ouabain binding studies revealed that amiodarone inhibition of [3H]ouabain binding is competitive. K+-activated p-nitrophenyl phosphatase activity showed a maximum inhibition of 32 per cent at 200 microM amiodarone. Synaptosomal ATPase activities did not show any change in rats treated with amiodarone (20 mg kg-1 day-1) for 6 weeks, when compared to controls. The treatment period may be short, since the reported neurological abnormalities in patients were observed during 3-5 years of treatment. The present results suggest that amiodarone induced neuropathy may be due to its interference with sodium dependent phosphorylation of Na+, K+-ATPase reaction, thereby affecting active ion transport phenomenon and oxidative phosphorylation resulting in low turnover of ATP in the nervous system.  相似文献   

11.
12.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

13.
The effect of cholesterol incorporation and depletion of the cardiac sarcolemmal sacs on (Ca2+ + Mg2+)-ATPase activity was examined. Cholesterol incorporation to the sarcolemmal sacs was achieved utilizing an in vivo and an in vitro procedure. Cholesterol depleted membranes were obtained in vitro after incubation of the sarcolemmal sacs with inactivated plasma. Arrhenius plots of the (Ca2+ + Mg2+)-ATPase activity showed a triphasic curve when the assays were carried out using a temperature range between 0 and 40 degrees C. The sarcolemmal (Ca2+ + Mg2+)-ATPase activity was shown to be inversely proportional to the cholesterol concentration of the membranes, showing a low ATPase activity with a high cholesterol content and a high ATPase activity when the cholesterol concentration was low. Although the (Ca2+ + Mg2+)-ATPase activity was found to be inhibited in the cholesterol incorporated sarcolemmal sacs, the withdrawal of small amounts of cholesterol from the membranes produced an important stimulatory effect. Changes in (Ca2+ + Mg2+)-ATPase activity due to variation in the membrane cholesterol concentration were shown to be reversible. Our results indicate the possibility of a slow exchange of cholesterol between the tightly bound lipid surrounding the (Ca2+ + Mg2+)-ATPase and the bulk lipid of the sarcolemma.  相似文献   

14.
15.
Copper(II) substituted human and bovine carbonic anhydrases B in the presence of bicarbonate have been investigated in solution through water-solvent proton nuclear magnetic resonance (nmr) at variable magnetic fields. HCO3-, contrary to all the other monoanionic inhibitors, partially reduces the water proton relaxation rates. This has been accounted for on the basis of the availability within the active cavity of two coordination positions partially overlapping. 13C-nmr measurements on both CO2 and HCO3- confirm that HCO3- binds the metal, whereas CO2 interacts with the paramagnetic center at nonbonding distance. The upper limit for the CO2 in equilibrium HCO3- interconversion has been estimated to be 10 sec-1.  相似文献   

16.
Transcapillary CO2 exchange entails a transient perfusate CO2-HCO3(-)-H+ disequilibrium, leading to net loading or unloading of blood HCO3-. Perfusate reequilibration may or may not reach completion during the time of capillary transit, depending on the rate of intracapillary CO2-HCO3(-)-H+ reactions. Failure to reestablish equilibrium within the "open" capillary system leads to continued reequilibration in the "closed" postcapillary vasculature with resultant shifts in postcapillary perfusate PCO2, pH, and [HCO3-]. In the present study, we determined the effects of perfusate nonbicarbonate buffer capacity (beta) on intracapillary CO2-HCO3(-)-H+ reactions in isolated saline-perfused rat lungs. Effects of beta on the rate of transcapillary CO2 excretion (VCO2) and the magnitude of the postcapillary perfusate pH disequilibrium were measured as a function of luminal vascular carbonic anhydrase (CA) activity. The data indicate that beta markedly influenced the kinetics and dynamics of intravascular CO2-HCO3(-)-H+ reactions. beta affected VCO2 and the relative enhancement of VCO2 by luminal vascular CA. The data emphasize the inadequacies of using traditional "equilibrium" models of the CO2-HCO3(-)-H+ system to investigate capillary CO2 transport and exchange, even in organs (e.g., lungs) that contain significant luminal vascular CA activity.  相似文献   

17.
18.
NBCe1-B, a major splice variant of the electrogenic Na+--HCO3- cotransporter (NBCe1) fulfills basic cellular functions including regulation of intracellular pH and epithelial HCO3- secretion. However, its cellular regulatory mechanism still remains elusive. Here, we provide evidence for the first time that NBCe1-B activity can be controlled by intracellular Mg2+ (Mg2+(i)), the physiologically most abundant intracellular divalent cation. Using the whole-cell patch-clamp technique, we found that recombinant NBCe1-B currents expressed in HEK293 and NIH3T3 cells were inhibited voltage-independently by Mg2+(i) in a concentration-dependent manner (K(i) approximately 0.01 mM). The Mg2+(i) inhibition was partially relieved by truncation of the NBCe1-B specific N-terminal region (K(i) approximately 0.3 mM), and was also observed for native electrogenic Na+--HCO3- cotransporter current in bovine parotid acinar cells that endogenously express NBCe1-B (K(i) approximately 1 mM). These results suggest that Mg2+ may be a cytosolic factor that limits intrinsic cotransport activity of NBCe1-B in mammalian cells.  相似文献   

19.
20.
Activity of a HCO-3 stimulated Mg2+ dependent ATPase is demonstrated in mitochondrial fractions of the avian duodenum. Suppression of eggshell calcification resulted in a slight reduction in Mg2+, Ca2+ and Mg2+HCO-3 ATPase activities. Duodenal carbonic anhydrase activity was lower in birds laying soft-shelled eggs than in birds laying normal eggs. Alkaline phosphatase and calcium binding protein levels both decreased along the length of the small intestine, but the effect was more pronounced for alkaline phosphatase. Suppression of eggshell calcification and treatment of shell-less laying hens with 1,25(OH)2D3 influenced alkaline phosphatase activity only in the duodenal mucosa. Suppression of eggshell calcification reduced CaBP levels in all sections of the intestine. Treatment with 1,25(OH)2D3 restored CaBP levels. Regulation of intestinal CaBP levels by 1,25(OH)2D3 would therefore, seem to be controlled more directly by calcium requirements associated with eggshell calcification than by gonadal hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号