首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Due to the association of oxidative stress and telomere shortening, it was aimed in the present study to investigate the possibility whether cyclosporine‐A exerts its nephrotoxic side effects via induction of oxidative stress‐induced renal telomere shortening and senescent phenotype in renal tissues of rats. Renal oxidative stress markers, 8‐hydroxydeoxyguanosine, malondialdehyde, and protein carbonyl groups were measured by standard methods. Telomere length and telomerase activity were also evaluated in kidney tissue samples. Results showed that cyclosporine‐A treatment significantly (< 0.05) enhanced renal malondialdehyde, 8‐hydroxydeoxyguanosine, and protein carbonyl groups levels, decreased renal telomere length, and deteriorated renal function compared with the controls. Renal telomerase activity was not affected by cyclosporine‐A. Renal telomere length could be considered as an important parameter of both oxidative stress and kidney function. Telomere shortening and accelerated kidney aging may be caused by cyclosporine‐induced oxidative stress, indicating the potential mechanism of cyclosporine‐induced nephrotoxicity.  相似文献   

3.
Leukocyte telomere length (LTL) and rate of telomere shortening are known biomarkers of aging while, numerous studies showed that Mediterranean diet (MD) may boost longevity. We studied association between telomere length, telomerase activity and different adherence to MD and its effects on healthy status. The study was conducted in 217 elderly subjects stratified according Mediterranean diet score (MDS) in low adherence (MDS≤3), medium adherence (MDS 4–5) and high adherence (MDS≥6) groups. LTL was measured by quantitative polymerase chain reaction and telomerase activity by a PCR-ELISA protocol. High adherence group showed longer LTL (p = 0.003) and higher telomerase activity (p = 0.013) compared to others. Linear regression analysis including age, gender, smoking habit and MDS showed that MDS was independently associated with LTL (p = 0.024) and telomerase activity levels (p = 0.006). Telomerase activity was independently associated with LTL (p = 0.007) and negatively modulated by inflammation and oxidative stress. Indeed, telomerase levels were associated with healthy status independently of multiple covariates (p = 0.048). These results support a novel role of MD in promoting health-span suggesting that telomere maintenance, rather than LTL variability is the major determinant of healthy status among elderly.  相似文献   

4.
Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay.In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain.Compared to the traditional TRAP assay that utilize 32P labeled radioactive dCTP''s for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region.  相似文献   

5.
Maejima Y  Adachi S  Ito H  Hirao K  Isobe M 《Aging cell》2008,7(2):125-136
Cellular senescence is an important phenomenon in decreased cellular function. Recently, it was shown that cellular senescence is induced in proliferating cells within a short period of time by oxidative stresses. This phenomenon is known as premature senescence. However, it is still unknown whether premature senescence can be also induced in cardiomyocytes. The aim of the present study was to investigate whether a senescence-like phenotype can be induced in cardiomyocytes by oxidative stress. In cardiomyocytes obtained from aged rats (24 months of age), the staining for senescence-associated beta-galactosidase increased significantly and the protein or RNA levels of cyclin-dependent kinase inhibitors increased compared to those of young rats. Decreased cardiac troponin I phosphorylation and telomerase activity were also observed in aged cardiomyocytes. Treatment of cultured neonatal rat cardiomyocytes with a low concentration of doxorubicin (DOX) (10(-7) mol L(-1)) did not induce apoptosis but did induce oxidative stress, which was confirmed by 2',7'-dichlorofluorescin diacetate staining. In DOX-treated neonatal cardiomyocytes, increased positive staining for senescence-associated beta-galactosidase, cdk-I expression, decreased cardiac troponin I phosphorylation, and decreased telomerase activity were observed, as aged cardiomyocytes. Alterations in mRNA expression typically seen in aged cells were observed in DOX-treated neonatal cardiomyocytes. We also found that promyelocytic leukemia protein and acetylated p53, key proteins involved in stress-induced premature senescence in proliferating cells, were associated with cellular alterations of senescence in DOX-treated cardiomyocytes. In conclusion, cardiomyocytes treated with DOX showed characteristic changes similar to cardiomyocytes of aged rats. promyelocytic leukemia-related p53 acetylation may be an underlying mechanism of senescence-like alterations in cardiomyocytes. These findings indicate a novel mechanism of myocardial dysfunction induced by oxidative stress.  相似文献   

6.
7.
Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/?) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/?) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/? mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.  相似文献   

8.
This study investigated sex differences in chronic social stress-induced pressor and behavioral responses in normotensive and prehypertensive rats. Adult Wistar and borderline hypertensive (BH) rats (offspring of Wistar dams and spontaneously hypertensive sires) of both sexes were exposed to crowding stress (200 cm2/rat, 5 rats/cage) for 6 weeks. Controls were kept 4 rats/cage (480 cm2/rat). Blood pressure (BP) and open field activity were determined before experiment and after 1, 3 and 6 weeks of stress. Basal BP of BH rats was higher than in Wistar (p < 0.001) in both males and females. Horizontal and vertical activity of BH males and females was elevated vs. Wistar (p < 0.01) and females in both phenotypes were more active than the respective males (p < 0.01). Crowding resulted in delayed between-session habituation and significant elevation of BP only in BH males (143 ± 2 vs. 134 ± 3 mmHg in controls after 6-week crowding). No changes of BP were observed in crowded females of both phenotypes regardless of their delayed between-session habituation. Thus chronic social stress produced by crowding seems to represent a significant risk factor for development of stress-related hypertension only in males with genetic predisposition to high blood pressure while females of both phenotypes responded to stress by impaired between-session habituation.  相似文献   

9.
10.
11.
Differentiated cells telomere length is an indicator of senescence or lifespan; however, in peripheral blood leukocytes the relative shortening of the telomere has been considered as a biological marker of aging, and lengthening telomere as an associated risk to cancer. Individual’s age, type of tissue, lifestyle, and environmental factors make telomere length variable. The presence of environmental carcinogens such as arsenic (As) influence as causal agents of these alterations, the main modes of action for As described are oxidative stress, reduction in DNA repair capacity, overexpression of genes, alteration of telomerase activity, and damage to telomeres. The telomeres of leukocytes resulting a finite capacity of replication due to the low or no activity of the telomerase enzyme, therefore, elongation telomere in this kind of cells is a potential biological marker associated with the development of chronic diseases and carcinogenesis.  相似文献   

12.
Telomeres have lately received considerable attention in the development of broad-leaved tree species. In order to determine tissue-, sex-, season- and age-specific changes in telomerase activity in ginkgo trees, analyses of the telomerase repeat amplification protocol were carried out. In all of the tissues detected (embryonal callus, microspore tissues and leaves) telomerase activity was found, with differences between these activities statistically significant (P < 0.05). The highest telomerase activity was found in embryonal callus, suggesting that ginkgo trees have tissue-specific telomerase activity. Tissues containing high levels of dividing cells also have high levels of telomerase activity. No significant difference of telomerase activity was found between male and female trees (P > 0.05). In the annual development cycle, the highest telomerase activity was found in April and a decreasing trend over time in the four age groups studied: 10, 20, 70 and 700 year. The most obvious decline appeared in trees of the 700 year old group, suggesting that ginkgo trees have season-specific telomerase activities and trees of various ages react differently to seasonal changes. The mean annual telomerase activity showed a regular decreasing trend in all leaf samples analyzed from 10 to 700 year old ginkgo trees. We conclude that maintenance of telomere length depends on season- and age- associated telomerase activity. An optimal telomere length is regulated and maintained by telomerase in Ginkgo biloba L.  相似文献   

13.
14.
Anti-apoptotic role of telomerase in pheochromocytoma cells   总被引:47,自引:0,他引:47  
Telomerase is a protein-RNA enzyme complex that adds a six-base DNA sequence (TTAGGG) to the ends of chromosomes and thereby prevents their shortening. Reduced telomerase activity is associated with cell differentiation and accelerated cellular senescence, whereas increased telomerase activity is associated with cell transformation and immortalization. Because many types of cancer have been associated with reduced apoptosis, whereas cell differentiation and senescence have been associated with increased apoptosis, we tested the hypothesis that telomerase activity is mechanistically involved in the regulation of apoptosis. Levels of telomerase activity in cultured pheochromocytoma cells decreased prior to cell death in cells undergoing apoptosis. Treatment of cells with the oligodeoxynucleotide TTAGGG or with 3,3'-diethyloxadicarbocyanine, agents that inhibit telomerase activity in a concentration-dependent manner, significantly enhanced mitochondrial dysfunction and apoptosis induced by staurosporine, Fe2+ (an oxidative insult), and amyloid beta-peptide (a cytotoxic peptide linked to neuronal apoptosis in Alzheimer's disease). Overexpression of Bcl-2 and the caspase inhibitor zVAD-fmk protected cells against apoptosis in the presence of telomerase inhibitors, suggesting a site of action of telomerase prior to caspase activation and mitochondrial dysfunction. Telomerase activity decreased in cells during the process of nerve growth factor-induced differentiation, and such differentiated cells exhibited increased sensitivity to apoptosis. Our data establish a role for telomerase in suppressing apoptotic signaling cascades and suggest a mechanism whereby telomerase may suppress cellular senescence and promote tumor formation.  相似文献   

15.
16.
Major depression is characterized for symptoms at the psychological, behavioral and physiological levels. The chronic mild stress model has been used as an animal model of depression. The consumption of sweet food, locomotor activity, body weight, lipid and protein oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, prefrontal cortex and cortex were assessed in rats exposed to chronic mild stress. Our findings demonstrated a decrease on sweet food intake, no effect on locomotor activity, lack of body weight gain, increase in protein (prefrontal, hippocampus, striatum and cortex) and lipidic peroxidation (cerebellum and striatum), and an increase in catalase (cerebellum, hippocampus, striatum, cortex) and a decrease in superoxide dismutase activity (prefrontal, hippocampus, striatum and cortex) in stressed rats. In conclusion, our results support the idea that stress produces oxidants and an imbalance between superoxide dismutase and catalase activities that contributes to stress-related diseases, such as depression.  相似文献   

17.
Circadian clocks are fundamental machinery in organisms ranging from archaea to humans. Disruption of the circadian system is associated with premature aging in mice, but the molecular basis underlying this phenomenon is still unclear. In this study, we found that telomerase activity exhibits endogenous circadian rhythmicity in humans and mice. Human and mouse TERT mRNA expression oscillates with circadian rhythms and are under the control of CLOCK–BMAL1 heterodimers. CLOCK deficiency in mice causes loss of rhythmic telomerase activities, TERT mRNA oscillation, and shortened telomere length. Physicians with regular work schedules have circadian oscillation of telomerase activity while emergency physicians working in shifts lose the circadian rhythms of telomerase activity. These findings identify the circadian rhythm as a mechanism underlying telomere and telomerase activity control that serve as interconnections between circadian systems and aging.  相似文献   

18.
19.
To gain better insights into cell kinetics under physiological conditions, telomerase activity in the functional and basal layers of cyclic endometrium (n= 33) was compared with the immunostaining of glandular and stromal cells within these layers (n= 25). Two immunohistochemical proliferation markers were used to demarcate cells in the G1phase of the cell cycle. In contrast to previous expectations, telomerase activity and both glandular and stromal proliferative activities were all significantly higher in the functional than in the basal endometrium (P< 0.002). The course of telomerase activity in the endometrial layers during the ovarian cycle was significantly associated with the proliferative scores for the functional and basal endometrial glands and the functional stroma but not the stromal compartment of the basal layer. Our findings indicate that the telomerase activity in cyclic endometrium is associated with the total number of proliferating glandular and stromal cells in the functional layer. Proliferating daughter cells of telomerase-competent stem cells may account for the lower levels of telomerase detected in normal basal endometrium.  相似文献   

20.
The aim of this study was to investigate how perceived stress may affect electroencephalographical (EEG) activity in a stress paradigm in a sample of 76 healthy participants. EEG activity was analyzed using multilevel modeling, allowing estimation of nested effects (EEG time segments within subjects). The stress paradigm consisted of a 3-minute pre-stimulus stress period and a 2-minute post-stimulus phase. At t=3 minutes, a single electrical stimulus was delivered. Participants were unaware of the precise moment of stimulus delivery and its intensity level. In the EEG time course of alpha activity, a stronger increase was observed during the post-stimulus period as compared to the pre-stimulus period. An opposite time course effect was apparent for gamma activity. Both effects were in line with a priori expectations and support the validity of this experimental EEG-stress paradigm. Secondly, we investigated whether interaction effects of stress and coping, as measured with the Perceived Stress Scale-10 questionnaire (PSS-10), could be demonstrated. A higher perceived stress score was accompanied by a greater increase in delta- and theta-activity during the post-stimulus phase, compared to low scores. In contrast, low coping capacity was associated with a stronger decrease in slow beta, fast beta and gamma activity during the post-stimulus phase. The results of the present article may be interpreted as proof-of-principle that EEG stress-related activity depends on the level of subjectively reported perceived stress. The inclusion of psychosocial variables measuring coping styles as well as stress-related personality aspects permits further examination of the interconnection between mind and body and may inform on the process of transformation from acute to chronic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号