首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assesses the controversial role of the mitochondrial permeability transition (MPT) in apoptosis. In primary rat hepatocytes expressing an IκB superrepressor, tumor necrosis factor alpha (TNFα) induced apoptosis as shown by nuclear morphology, DNA ladder formation, and caspase 3 activation. Confocal microscopy showed that TNFα induced onset of the MPT and mitochondrial depolarization beginning 9 h after TNFα treatment. Initially, depolarization and the MPT occurred in only a subset of mitochondria; however, by 12 h after TNFα treatment, virtually all mitochondria were affected. Cyclosporin A (CsA), an inhibitor of the MPT, blocked TNFα-mediated apoptosis and cytochrome c release. Caspase 3 activation, cytochrome c release, and apoptotic nuclear morphological changes were induced after onset of the MPT and were prevented by CsA. Depolarization and onset of the MPT were blocked in hepatocytes expressing ΔFADD, a dominant negative mutant of Fas-associated protein with death domain (FADD), or crmA, a natural serpin inhibitor of caspases. In contrast, Asp-Glu-Val-Asp-cho, an inhibitor of caspase 3, did not block depolarization or onset of the MPT induced by TNFα, although it inhibited cell death completely. In conclusion, the MPT is an essential component in the signaling pathway for TNFα-induced apoptosis in hepatocytes which is required for both cytochrome c release and cell death and functions downstream of FADD and crmA but upstream of caspase 3.  相似文献   

2.
Although TRAIL is considered a potential anticancer agent, it enhances tumor progression by activating NF-κB in apoptosis-resistant cells. Cellular FLICE-like inhibitory protein (cFLIP) overexpression and caspase-8 activation have been implicated in TRAIL-induced NF-κB activation; however, the underlying mechanisms are unknown. Here, we report that caspase-8-dependent cleavage of RIP1 in the kinase domain (KD) and intermediate domain (ID) determines the activation state of the NF-κB pathway in response to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. In apoptosis-sensitive cells, caspase-8 cleaves RIP1 in the KD and ID immediately after the recruitment of RIP1 to the receptor complex, impairing IκB kinase (IKK) recruitment and NF-κB activation. In apoptosis-resistant cells, cFLIP restricts caspase-8 activity, resulting in limited RIP1 cleavage and generation of a KD-cleaved fragment capable of activating NF-κB but not apoptosis. Notably, depletion of the cytoplasmic pool of TRAF2 and cIAP1 in lymphomas by CD40 ligation inhibits basal RIP1 ubiquitination but does not prompt cell death, due to CD40L-induced cFLIP expression and limited RIP1 cleavage. Inhibition of RIP1 cleavage at the KD suppresses NF-κB activation and cell survival even in cFLIP-overexpressing lymphomas. Importantly, RIP1 is constitutively cleaved in human and mouse lymphomas, suggesting that cFLIP-mediated and caspase-8-dependent limited cleavage of RIP1 is a new layer of mechanism that promotes NF-κB activation and lymphoma survival.  相似文献   

3.
4.
Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis.  相似文献   

5.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

6.
Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor–proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD''s ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.  相似文献   

7.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

8.
Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97.  相似文献   

9.
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy.  相似文献   

10.
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.  相似文献   

11.
Smac mimetic promotes apoptosis by neutralizing inhibitor of apoptosis (IAP) proteins and is considered as a promising cancer therapeutic. Although an autocrine/paracrine tumor necrosis factor-α (TNFα) loop has been implicated in Smac mimetic-induced cell death, little is yet known about additional factors that determine sensitivity to Smac mimetic. Using genome-wide gene expression analysis, we identify death receptor 5 (DR5) as a novel key mediator of Smac mimetic-induced apoptosis. Although several cell lines that are sensitive to the Smac mimetic BV6 die in a TNFα-dependent manner, A172 glioblastoma cells undergo BV6-induced apoptosis largely independently of TNFα/TNFR1, as the TNFα-blocking antibody Enbrel or TNFR1 knockdown provide little protection. Yet, BV6-stimulated nuclear factor-κB (NF-κB) activation is critically required for apoptosis, as inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) blocks BV6-induced apoptosis. Unbiased genome-wide gene expression studies in IκBα-SR-overexpressing cells versus vector control cells reveal that BV6 increases DR5 expression in a NF-κB-dependent manner. Importantly, this BV6-stimulated upregulation of DR5 is critically required for apoptosis, as transient or stable knockdown of DR5 significantly inhibits BV6-triggered apoptosis. In addition, DR5 silencing attenuates formation of a RIP1/FADD/caspase-8 cytosolic cell death complex and activation of caspase-8, -3 and -9. By identifying DR5 as a critical mediator of Smac mimetic-induced apoptosis, our findings provide novel insights into the determinants that control susceptibility of cancer cells to Smac mimetic.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it is capable of preferentially inducing apoptosis in human cancer over normal cells. The majority of human pancreatic cancers, unfortunately, are resistant to TRAIL treatment. Here, we show that the inhibition of caspase-8 cleavage is the most upstream event in TRAIL resistance in pancreatic cancers. TRAIL treatment led to the cleavage of caspase-8 and downstream caspase-9, caspase-3, and DNA fragmentation factor 45 (DFF45) in TRAIL-sensitive pancreatic cancer cell lines (BXPC-3, PACA-2). This caspase-8-initiated caspase cascade, however, was inhibited in TRAIL-resistant pancreatic cancer cell lines (PANC-1, ASPC-1, CAPAN-1, CAPAN-2). The long and short forms of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP(L), c-FLIP(S)) were highly expressed in the TRAIL-resistant as compared to the sensitive cells; knockdown of c-FLIP(L) and c-FLIP(S) by a short hairpin RNA (shRNA) rendered the resistant cells sensitive to TRAIL-induced apoptosis through the cleavage of caspase-8 and activation of the mitochondrial pathway. Receptor-interacting protein (RIP) has been reported in TRAIL-induced activation of NF-kappaB and we show here that knockdown of RIP sensitized the resistant cells to TRAIL-induced apoptosis. These results indicate the role of c-FLIP and RIP in caspase-8 inhibition and thus TRAIL resistance. Treatment of the resistant cells with camptothecin, celecoxib and cisplatin resulted in the downregulation of c-FLIP and caused a synergistic apoptotic effect with TRAIL. These studies therefore suggest that combination treatment with chemotherapy can overcome TRAIL resistance and enhance TRAIL therapeutic efficacy in treating pancreatic cancers.  相似文献   

13.
A RIP-like protein, RIP3, has recently been reported that contains an N-terminal kinase domain and a novel C-terminal domain that promotes apoptosis. These experiments further characterize RIP3-mediated apoptosis and NF-kappaB activation. Northern blots indicate that rip3 mRNA displays a restricted pattern of expression including regions of the adult central nervous system. The rip3 gene was localized by fluorescent in situ hybridization to human chromosome 14q11.2, a region frequently altered in several types of neoplasia. RIP3-mediated apoptosis was inhibited by Bcl-2, Bcl-x(L), dominant-negative FADD, as well as the general caspase inhibitor Z-VAD. Further dissection of caspase involvement in RIP3-induced apoptosis indicated inhibition by the more specific inhibitors Z-DEVD (caspase-3, -6, -7, -8, and -10) and Z-VDVAD (caspase-2). However, caspase-1, -6, -8 and -9 inhibitors had little or no effect on RIP3-mediated apoptosis. Mutational analysis of RIP3 revealed that the C-terminus of RIP3 contributed to its apoptotic activity. This region is similar, but distinct, to the death domain found in many pro-apoptotic receptors and adapter proteins, including FAS, FADD, TNFR1, and RIP. Furthermore, point mutations of RIP3 at amino acids conserved among death domains, abrogated its apoptotic activity. RIP3 was localized by immunofluorescence to the mitochondrion and may play a key role in the mitochondrial disruptions often associated with apoptosis.  相似文献   

14.
Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA), a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported. Herein, we postulated that GA might target activated hepatic stellate cells (aHSCs), the cell type responsible for hepatofibrosis, to mitigate the process of fibrosis. The molecular cytotoxic mechanisms that GA exerted on aHSCs were then analyzed. The results indicated that GA elicited aHSC programmed cell death through TNF–α–mediated necroptosis. GA induced significant oxidative stress through the suppression of catalase activity and the depletion of glutathione (GSH). Elevated oxidative stress triggered the production of TNF–α facilitating the undergoing of necroptosis through the up-regulation of key necroptotic regulatory proteins TRADD and receptor-interacting protein 3 (RIP3), and the inactivation of caspase–8. Calmodulin and calpain–1 activation were engaged, which promoted subsequent lysosomal membrane permeabilization (LMP). The TNF–α antagonist (SPD–304) and the RIP1 inhibitor (necrostatin–1, Nec–1) confirmed GA-induced TNFR1–mediated necroptosis. The inhibition of RIP1 by Nec–1 diverted the cell death from necroptosis to apoptosis, as the activation of caspase 3 and the increase of cytochrome c. Collectively, this is the first report indicating that GA induces TNF signaling–triggered necroptosis in aHSCs, which may offer an alternative strategy for the amelioration of liver fibrosis.  相似文献   

15.
The RNA alphavirus Semliki Forest (SFV) triggers apoptosis in various mammalian cells, but it has remained controversial at what infection stage and by which signalling pathways host cells are killed. Both RNA synthesis-dependent and -independent initiation processes and mitochondrial as well as death receptor signalling pathways have been implicated. Here, we show that SFV-induced apoptosis is initiated at the level of RNA replication or thereafter. Moreover, by expressing antiapoptotic genes from recombinant SFV (replicons) and by using neutralizing reagents and gene-knockout cells, we provide clear evidence that SFV does not require CD95L-, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)- or tumor necrosis factor-mediated signalling but mitochondrial Bak to trigger cytochrome c release, the fall in the mitochondrial membrane potential, apoptotic protease-activating factor-1/caspase-9 apoptosome formation and caspase-3/-7 activation. Of seven BH3-only proteins tested, only Bid contributed to effective SFV-induced apoptosis. However, caspase-8 activation and Bid cleavage occurred downstream of Bax/Bak, indicating that truncated Bid formation serves to amplify rather than trigger SFV-induced apoptosis. Our data show that SFV sequentially activates a mitochondrial, Bak-mediated, caspase-8-dependent and Bid-mediated death signalling pathway that can be accurately dissected with gene-knockout cells and SFV replicons carrying antiapoptotic genes.  相似文献   

16.
Mapatumumab and lexatumumab (targeting death receptor 4 (DR4) and 5 (DR5), respectively) are agonistic TRAIL receptor antibodies that induce apoptosis in a wide range of cancer cells. The potency of mapatumumab and lexatumumab was assessed in mono therapy protocols, and the ability to sensitize for dacarbazine (DTIC) treatment was explored in ten different melanoma cell lines. Our data indicated that melanoma cell lines tend to be resistant to mapatumumab, most likely due to low expression of DR4, while a dose dependent response to lexatumumab was observed. Combining DTIC and lexatumumab induced an additive or synergistic effect on cell death in the various melanoma cell lines. The synergistic effect observed in the FEMX-1 cell line was related to enhanced cleavage of Bid in parallel with elevated expression of the pro-apoptotic proteins Bim, Bax and Bak. Furthermore, the anti-apoptotic proteins Bcl-XL, cIAP-1, XIAP and livin were down regulated. Cleavage of Bid and down regulation of cIAP-2 and livin were observed in vivo. Altogether, these data suggest a change in the balance between pro- and anti-apoptotic proteins favoring induction of apoptosis. In the more therapy resistant cell line, HHMS, no changes in the pro- and anti-apoptotic proteins were observed. FEMX-1 xenografts treated with DTIC and lexatumumab showed reduced growth and increased level of apoptosis compared to the control groups, providing arguments for further evaluation of this combination in melanoma patients.  相似文献   

17.
The receptor-interacting protein kinase 3 (RIP3) associates with RIP1 in a necrosome complex that can induce necroptosis, apoptosis, or cell proliferation. We analyzed the expression of RIP1 and RIP3 in CD34+ leukemia cells from a cohort of patients with acute myeloid leukemia (AML) and CD34+ cells from healthy donors. RIP3 expression was significantly reduced in most AML samples, whereas the expression of RIP1 did not differ significantly. When re-expressed in the mouse DA1-3b leukemia cell line, RIP3 induced apoptosis and necroptosis in the presence of caspase inhibitors. Transfection of RIP3 in the WEHI-3b leukemia cell line or in the mouse embryonic fibroblasts also resulted in increased cell death. Surprisingly, re-expression of a RIP3 mutant with an inactive kinase domain (RIP3-kinase dead (RIP3-KD)) induced significantly more and earlier apoptosis than wild-type RIP3 (RIP3-WT), indicating that the RIP3 kinase domain is an essential regulator of apoptosis/necroptosis in leukemia cells. The induced in vivo expression of RIP3-KD but not RIP3-WT prolonged the survival of mice injected with leukemia cells. The expression of RIP3-KD induced p65/RelA nuclear factor-κB (NF-κB) subunit caspase-dependent cleavage, and a non-cleavable p65/RelA D361E mutant rescued these cells from apoptosis. p65/RelA cleavage appears to be at least partially mediated by caspase-6. These data indicate that RIP3 silencing in leukemia cells results in suppression of the complex regulation of the apoptosis/necroptosis switch and NF-κB activity.Impairment in cell death pathways represents a general characteristic of most cancer cells. Cells can die through several mechanisms; two such cell death pathways include apoptosis and necrosis, which display distinct characteristics.1 Necrosis can occur in either an incidental or intentional manner as a result of defined signals, and the term necroptosis has been proposed to describe this programmed necrosis.2 Activation of the receptor-interacting protein kinase 1 (RIP1) and 3 (RIP3) proteins in the necrosome complex can induce apoptosis, necroptosis, or cell proliferation after the activation of death receptors, including TNFR1, TRAIL, and FAS.3, 4 RIP1 and RIP3 are serine threonine kinases with strong homology.5 Both proteins are composed of a kinase domain at the N-terminus and a RIP homotypic interaction motif (RHIM) at the C-terminus of RIP3. The RIP1/RIP3 complex can induce necroptosis initiated by cell death receptors of the tumor necrosis factor family. RIP3 binds to RIP1 via their respective RHIM domains, and these proteins form a filamentous structure with characteristics similar to β-amyloids and can cross phosphorylate each other and several downstream targets involved in necroptosis, apoptosis, or nuclear factor-κB (NF-κB) activation.6The role of RIP3 in necroptosis and inflammation has been extensively studied, but its role in cancer remains poorly understood. A previous study in chronic lymphocytic leukemia (CLL) showed that malignant lymphoid cells were resistant to tumor necrosis factor-α (TNFα+Z-VAD-induced (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) necroptosis and expressed reduced levels of RIP3 and cylindromatosis (CYLD), which regulates RIP1.7 Another study on childhood acute lymphoblastic leukemia reported that RIP1 was necessary to mediate the inhibitor of apoptosis protein-mediated sensitization of blast cells to chemotherapy.8 Autocrine TNFα loops that activate NF-κB through RIP1 have also been described in various cancer cell lines.9, 10Here we report that the expression of RIP3 was decreased in the majority of acute myeloid leukemia (AML) patients examined, whereas the expression of RIP1 remained unaffected. The expression of a RIP3 mutant with an inactivated kinase domain (RIP3-kinase dead (RIP3-KD)) in myeloid cell lines resulted in massive and early apoptosis and the caspase-mediated cleavage of p65/RkelA at a caspase-6 putative consensus site. Moreover, only RIP3-KD prolonged the survival of leukemic mice. Our results show that RIP3 activity regulates the apoptosis/necroptosis switch via its kinase activity in leukemia cells, and that other functions of RIP3 that are independent of its kinase domain modulate apoptosis and NF-κB activity.  相似文献   

18.
Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases.  相似文献   

19.
Park IC  Park MJ  Woo SH  Lee KH  Lee SH  Rhee CH  Hong SI 《Cytokine》2001,15(3):166-170
We examined the role of caspases and serine protease(s) in cell death induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). After incubation of adenocarcinoma cells with TRAIL, caspase-3, -8 were activated and the cleavage of Bid induced the release of cytochrome c, from the mitochondria to the cytosol. Tetrapeptide inhibitors of caspase-1, -2, -3, and -8 suppressed DNA fragmentation and attenuated the release of cytochrome c, whereas inhibitors of caspase-5 did not. Interestingly, the general serine protease(s) inhibitor 4-(2-aminoethyl)benzylsulfonyl fluoride (AEBSF) resulted in the arrest of apoptosis. However, the AEBSF did not prevent the release of mitochondrial cytochrome c during TRAIL-induced apoptosis. From these results, we postulate that serine protease(s) may be involved in post-mitochondrial apoptotic events, that lead to the activation of the initiator, caspase-9.  相似文献   

20.
Three members of the IAP family (X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins-1/-2 (cIAP1 and cIAP2)) are potent suppressors of apoptosis. Recent studies have shown that cIAP1 and cIAP2, unlike XIAP, are not direct caspase inhibitors, but block apoptosis by functioning as E3 ligases for effector caspases and receptor-interacting protein 1 (RIP1). cIAP-mediated polyubiquitination of RIP1 allows it to bind to the pro-survival kinase transforming growth factor-β-activated kinase 1 (TAK1) which prevents it from activating caspase-8-dependent death, a process reverted by the de-ubiquitinase CYLD. RIP1 is also a regulator of necrosis, a caspase-independent type of cell death. Here, we show that cells depleted of the IAPs by treatment with the IAP antagonist BV6 are greatly sensitized to tumor necrosis factor (TNF)-induced necrosis, but not to necrotic death induced by anti-Fas, poly(I:C) oxidative stress. Specific targeting of the IAPs by RNAi revealed that repression of cIAP1 is responsible for the sensitization. Similarly, lowering TAK1 levels or inhibiting its kinase activity sensitized cells to TNF-induced necrosis, whereas repressing CYLD had the opposite effect. We show that this sensitization to death is accompanied by enhanced RIP1 kinase activity, increased recruitment of RIP1 to Fas-associated via death domain and RIP3 (which allows necrosome formation), and elevated RIP1 kinase-dependent accumulation of reactive oxygen species (ROS). In conclusion, our data indicate that cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号