首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Errors in chromosome segregation during meiotic division in gametes can lead to aneuploidy that is subsequently transmitted to the embryo upon fertilization. The resulting aneuploidy in developing embryos is recognized as a major cause of pregnancy loss and congenital birth defects such as Down’s syndrome. Accurate chromosome segregation is critically dependent on the formation of the microtubule spindle apparatus, yet this process remains poorly understood in mammalian oocytes. Intriguingly, meiotic spindle assembly differs from mitosis and is regulated, at least in part, by unique microtubule organizing centers (MTOCs). Assessment of MTOC-associated proteins can provide valuable insight into the regulatory mechanisms that govern meiotic spindle formation and organization. Here, we describe methods to isolate mouse oocytes and deplete MTOC-associated proteins using a siRNA-mediated approach to test function. In addition, we describe oocyte fixation and immunofluorescence analysis conditions to evaluate meiotic spindle formation and organization.  相似文献   

2.
MAPK-activated protein kinase 2 (MK2), a direct substrate of p38 MAPK, plays key roles in multiple physiological functions in mitosis. Here, we show for the first time the unique distribution pattern of MK2 in meiosis. Phospho-MK2 was localized on bipolar spindle minus ends and along the interstitial axes of homologous chromosomes extending over centromere regions and arm regions at metaphase of first meiosis (MI stage) in mouse oocytes. At metaphase of second meiosis (MII stage), p-MK2 was localized on the bipolar spindle minus ends and at the inner centromere region of sister chromatids as dots. Knockdown or inhibition of MK2 resulted in spindle defects. Spindles were surrounded by irregular nondisjunction chromosomes, which were arranged in an amphitelic or syntelic/monotelic manner, or chromosomes detached from the spindles. Kinetochore–microtubule attachments were impaired in MK2-deficient oocytes because spindle microtubules became unstable in response to cold treatment. In addition, homologous chromosome segregation and meiosis progression were inhibited in these oocytes. Our data suggest that MK2 may be essential for functional meiotic bipolar spindle formation, chromosome segregation and proper kinetochore–microtubule attachments.  相似文献   

3.
Zinc is an extremely important trace element that plays important roles in several biological processes. However, the function of zinc in meiotic division of porcine oocytes is unknown. In this study, we investigated the role of zinc during meiotic resumption in in vitro matured porcine oocytes. During meiotic division, a massive release of zinc was observed. The level of free zinc in the cytoplasm significantly increased during maturation. Depletion of zinc using N, N, N′, N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+ chelator, blocked meiotic resumption in a dose dependent manner. The level of phosphorylated mitogen activated protein kinase (MAPK) and p34cdc2 kinase activity were reduced when zinc was depleted. Moreover, zinc depletion reduced the levels of phosphorylated protein kinase C (PKC) substrates in a dose dependent manner. Real-time PCR analysis showed that expression of the MAPK- and maturation promoting factor related genes C-mos, CyclinB1, and Cdc2 was downregulated following zinc depletion. Treatment with the PKC agonist phorbol 12-myristate 13-acetate (PMA) increased phosphorylation of PKC substrates and MAPK and increased p34cdc2 kinase activity. This rescued the meiotic arrest, even in the presence of TPEN. Activation of PKC by PMA increased the level of zinc in the cytoplasm. These data demonstrate that zinc is required for meiotic resumption in porcine oocytes, and this appears to be regulated via a PKC related pathway.  相似文献   

4.
Thioredoxin-interacting protein (Txnip) regulates intracellular redox state and prompts oxidative stress by binding to and inhibiting Thioredoxin (Trx). In addition, via a Trx-independent mechanism, Txnip regulates glucose metabolism and thus maintains intracellular glucose levels. Previously, we found Txnip mRNA highly expressed in immature germinal vesicle (GV) oocytes, but currently there is no report describing the role of Txnip in oocytes. Therefore, we conducted the present study to determine the function of Txnip in mouse oocytes'' maturation and meiosis by using RNA interference (RNAi) method. Upon specific depletion of Txnip, 79.5% of oocytes were arrested at metaphase I (MI) stage. Time-lapse video microscopy analysis revealed that the formation of granules in the oocyte cytoplasm increased concurrent with retarded cytoplasmic streaming after Txnip RNAi treatment. Txnip RNAi-treated oocytes had upregulated glucose uptake and lactate production. To confirm the supposition that mechanism responsible for these observed phenomena involves increased lactate in oocytes, we cultured oocytes in high lactate medium and observed the same increased granule formation and retarded cytoplasmic streaming as found by Txnip RNAi. The MI-arrested oocytes exhibited scattered microtubules and aggregated chromosomes indicating that actin networking was disturbed by Txnip RNAi. Therefore, we conclude that Txnip is a critical regulator of glucose metabolism in oocytes and is involved in maintaining cytoplasmic streaming in mouse oocytes.  相似文献   

5.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chro- mosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA phys- ically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

6.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes.Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination,homologous chromosome synapsis and reductional chromosome segregation to occur.In mammalian cells,DNA physically associates with histones to form chromatin,which can be modified by methylation,phosphorylation,ubiquitination and acetylation to help regulate higher order chromatin structure,gene expression,and chromosome organisation.Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells,and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase.This review will discuss the role of chromatin modifications in meiotic recombination,homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

7.
It is well known that MAPK plays pivotal roles in oocyte maturation, but the function of MEK (MAPK kinase) remains unknown. We have studied the expression, subcellular localization and functional roles of MEK during meiotic maturation of mouse oocytes. We found that MEK1/2 phoshorylation (p-MEK1/2, indicative of MEK activation) was low in GV (germinal vesicle) stage, increased 2h after GVBD (germinal vesicle breakdown), and reached the maximum at metaphase II. Secondly, we found that P-MEK1/2 was restricted in the GV prior to GVBD. In prometaphase I and metaphase I, p-MEK1/2 was mainly associated with the spindle, especially with the spindle poles. At anaphase I and telophase I, p-MEK1/2 became diffusely distributed in the region between the separating chromosomes, and then became associated with the midbody. The association of p-MEK1/2 with spindle poles was further confirmed by its colocalization with the centrosomal proteins, γ-tubulin and NuMA. Thirdly, we have investigated the possible functional role of MEK1/2 activation by intravenous administration and intrabursal injection of a specific MEK inhibitor, U0126, and by microinjection of MEK siRNA into oocytes. All these manipulations cause disorganized spindle poles and spindle structure, misaligned chromosomes and larger than normal polar bodies. Our results suggest that MEK1/2 may function as a centrosomal protein and may have roles in microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte maturation.  相似文献   

8.
A continuous exposure of follicle-enclosed mouse oocytes to ovine luteinizing hormone (LH, 10 μg/ml) in vitro resulted in a 3-fold elevation of CAMP levels in the follicle cells, but not the oocytes, with subsequent oocyte maturation. When follicle-enclosed oocytes were exposed to forskolin (0.01–10 μM) for 2 hr and then incubated in forskolin-free medium (transient exposure group), oocytes underwent germinal vesicle breakdown in a dose-dependent manner. In contrast, a continuous exposure of the follicles to forskolin (10 μM) for up to 10 hr failed to induce resumption of meiosis. Follicle cell cAMP levels increased within 2 hr after the initial exposure to forskolin, and thereafter decreased rapidly regardless of whether forskolin treatment was transient or continuous. A similar transient increase in oocyte cAMP levels was observed after transient or continuous treatment with forskolin. It was evident, however, that at any time examined oocyte cAMP levels were consistently higher in the continuous exposure group than in the transient exposure group. Furthermore, a continuous exposure to forskolin also blocked LH-induced meiotic maturation. These findings suggest that elevated levels of cAMP in the oocyte block meiotic maturation in mouse oocytes. The present results further suggest that an increase in follicle cell cAMP levels is essential to the LH-induced meiotic maturation.  相似文献   

9.
10.
DURING meiosis in the females of many species, spindle assembly occurs in the absence of the microtubule-organizing centers called centrosomes. In the absence of centrosomes, the nature of the chromosome-based signal that recruits microtubules to promote spindle assembly as well as how spindle bipolarity is established and the chromosomes orient correctly toward the poles is not known. To address these questions, we focused on the chromosomal passenger complex (CPC). We have found that the CPC localizes in a ring around the meiotic chromosomes that is aligned with the axis of the spindle at all stages. Using new methods that dramatically increase the effectiveness of RNA interference in the germline, we show that the CPC interacts with Drosophila oocyte chromosomes and is required for the assembly of spindle microtubules. Furthermore, chromosome biorientation and the localization of the central spindle kinesin-6 protein Subito, which is required for spindle bipolarity, depend on the CPC components Aurora B and Incenp. Based on these data we propose that the ring of CPC around the chromosomes regulates multiple aspects of meiotic cell division including spindle assembly, the establishment of bipolarity, the recruitment of important spindle organization factors, and the biorientation of homologous chromosomes.  相似文献   

11.
减数分裂的顺利完成是胞质分裂和核分裂在时间和空间上的协调结果,细胞骨架系统在减数分裂的一系列事件中具有重要的调节作用.实验通过孤雌活化诱导小鼠MⅡ期卵减数分裂恢复,采用激光共聚焦显微术检测了减数分裂期间的微管、微丝和核的动态变化,并通过细胞骨架药物处理,以分析微管和微丝在减数分裂事件中的不同作用.结果显示:纺锤体微管为核的定位、分离和运动所必需;纺锤体从与质膜平行旋转至与质膜垂直是极体排放的前提;微丝是控制纺锤体旋转的关键因素;纺锤体旋转完成后微丝随即解聚,不参与极体的最后排出,形成原核后再重新组装.  相似文献   

12.
Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1) in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of “vulnerable” crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.  相似文献   

13.
In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.  相似文献   

14.
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.  相似文献   

15.
16.
The relative levels of microtubule-associated protein 2(MAP2) were determined during postnatal development of the mouse in six different discrete brain regions: cerebellum, cortex, hippocampus, olfactory bulb, brainstem, and hypothalamus. Brain homogenates were electrophoresed on sodium dodecyl sulfate-containing gels and analyzed by immunoblotting with MAP2-specific antibodies. The levels of MAP2 in each region were determined using radiolabeled secondary antibodies and densitometric quantification of the autoradiograms over a range that was determined to have a linear response. The results indicated that in all regions and at all ages there was only one high-molecular-weight polypeptide of MAP2, which did not change in electrophoretic mobility after dephosphorylation. In most regions, the levels of MAP2 increased during the first 2 postnatal weeks. However, there were differences in the time course and relative levels of MAP2 between regions. In addition, all regions of the brain expressed the low-molecular-weight form of MAP2 (MAP2c) that was present at birth as a heterogeneous group of polypeptides with an apparent molecular weight of 70K. Most of the heterogeneity of MAP2c, however, was eliminated after dephosphorylation. The levels of MAP2c decreased dramatically after 2 weeks postnatally, except for the olfactory bulb, where the levels of MAP2c remained relatively high even in adults.  相似文献   

17.
Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression.  相似文献   

18.
RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation. Immunofluorescence analysis showed that RBX1 displayed dynamic distribution during the maturation process: it localized around and migrated along with the spindle and condensed chromosomes. Rbx1 knockdown with the appropriate siRNAs led to a decreased rate of first polar body extrusion and most oocytes were arrested at metaphase I. Moreover, downregulation of Rbx1 caused accumulation of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome (APC/C), which is required for mouse meiotic maturation. In addition, we found apparently increased expression of the homologue disjunction-associated protein securin and cyclin B1, which are substrates of APC/C E3 ligase and need to be degraded for meiotic progression. These results indicate the essential role of the SCFβTrCP-EMI1-APC/C axis in mouse oocyte meiotic maturation. In conclusion, we provide evidence for the indispensable role of RBX1 in mouse oocyte meiotic maturation.  相似文献   

19.
Protein S-palmitoylation, a lipid modification mediated by members of the palmitoyltransferase family, serves as an important membrane-targeting mechanism in eukaryotes. Although changes in palmitoyltransferase expression are associated with various physiological and disease states, how these changes affect global protein palmitoylation and cellular function remains unknown. Using a bioorthogonal chemical reporter and labeling strategy to identify and analyze multiple cognate substrates of a single Erf2 palmitoyltransferase, we demonstrate that control of Erf2 activity levels underlies the differential modification of key substrates such as the Rho3 GTPase in vegetative and meiotic cells. We show further that modulation of Erf2 activity levels drives changes in the palmitoylome as cells enter meiosis and affects meiotic entry. Disruption of Erf2 function delays meiotic entry, while increasing Erf2 palmitoyltransferase activity triggers aberrant meiosis in sensitized cells. Erf2-induced meiosis requires the function of the Rho3 GTPase, which is regulated by its palmitoylation state. We propose that control of palmitoyltransferase activity levels provides a fundamental mechanism for modulating palmitoylomes and cellular functions.  相似文献   

20.
The meiosis-specific yeast gene SPO13 has been previously shown to be required to obtain two successive divisions in meiosis. We report here that vegetative expression of this gene causes a CDC28-dependent cell-cycle arrest at mitosis. Overexpression of SPO13 during meiosis causes a transient block to completion of the meiosis I division and suppresses the inability of cdc28(ts) strains to execute meiosis II. The spo13 defect can be partially suppressed by conditions that slow progression of the first meiotic division. Based on the results presented below, we propose that SPO13 acts as a meiotic timing function by transiently blocking progression through the meiosis I division, thereby allowing (1) coordination of the first division with assembly of the reductional segregation apparatus, and (2) subsequent entry into a second round of segregation to separate replicated sister chromatids without an intervening S-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号