首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species’ success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion.  相似文献   

2.
Alto BW  Griswold MW  Lounibos LP 《Oecologia》2005,146(2):300-310
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes.  相似文献   

3.
1. It was determined if the predatory midge Corethrella appendiculata Grabham imposes a fitness cost in a native mosquito, Ochlerotatus triseriatus Say, and an invasive mosquito, Aedes albopictus Skuse. The hypothesis that decreased activity of immature prey in the presence of predator cues is associated with life history costs through all life cycle stages was tested. 2. In experiment 1, individual larvae of O. triseriatus or A. albopictus were raised in the presence or absence of predation cues at two resource levels. Prey were video recorded to detect behavioural responses and to measure development time, size at emergence, and adult longevity. In experiment 2, prey populations were reared in similar environments and the frequency of predator cue additions was varied. 3. Only O. triseriatus reduced its activity in the presence of predation cues. Predation cues were associated with longer immature development times and shorter adult life spans in O. triseriatus, whereas in A. albopictus, the cues were associated with a larger size of emerging adults. 4. In the present study, it was found that behavioural modifications during the larval stage can affect mosquitoes through multiple stages of their complex life cycle. The species‐specific behavioural differences are probably attributable to the longer evolutionary history O. triseriatus has with predators, relative to the invasive A. albopictus.  相似文献   

4.
Kesavaraju B  Damal K  Juliano SA 《Oecologia》2008,155(3):631-639
Predator-mediated coexistence of competitors occurs when a species that is superior in competition is also more vulnerable to a shared predator compared to a poorer competitor. The invasive mosquito Aedes albopictus is usually competitively superior to Ochlerotatus triseriatus. Among second instar larvae, A. albopictus show a lesser degree of behavioral modification in response to water-borne cues from predation by the larval midge Corethrella appendiculata than do O. triseriatus, rendering A. albopictus more vulnerable to predation by C. appendiculata than O. triseriatus. The hypothesis that C. appendiculata predation favors coexistence of these competitors predicts that C. appendiculata abundances will be negatively and positively correlated with A. albopictus and O. triseriatus abundances, respectively, and that coexistence will occur where C. appendiculata are common. Actual abundances of O. triseriatus, A. albopictus, and C. appendiculata in three habitats fit this prediction. In natural container habitats like tree holes, C. appendiculata were abundant and competitors co-existed at similar densities. In cemeteries and tires, which occur primarily in non-forested, human-dominated habitats, A. albopictus dominated, with abundances twice those found in tree holes, but C. appendiculata and O. triseriatus were rare or absent. We also tested for whether antipredatory behavioral responses of A. albopictus differed among habitats or populations, or were correlated with local C. appendiculata abundances. We could detect no differences in A. albopictus antipredatory behavioral responses to water-borne cues from predation. Tree hole habitats appear to promote co-existence of O. triseriatus and A. albopictus through interactions with predatory C. appendiculata, and this predator effect appears to limit invasion success of A. albopictus in tree holes. There are many studies on predator-mediated coexistence in natural habitats but to our knowledge this is the first study to suggest differential predator-mediated coexistence between natural and man-made habitats. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The Asian Tiger Mosquito Aedes albopictus arrived in the USA in 1985 in used automobile tires from Japan and became established in Texas. This species has since spread to become the most abundant container-inhabiting mosquito in the southeastern USA, including Florida, where it has reduced the range of another non-indigenous mosquito, Aedes aegypti. To assess the accuracy of predictions that A. albopictus would competitively exclude the native Eastern Treehole Mosquito Aedes triseriatus from tires but not from treeholes (Livdahl and Willey (1991) Science 253: 189–191), we extensively monitored the abundances of mosquito immatures before and after the Asian Tiger invaded these habitats in south Florida. These field data failed to demonstrate exclusion of A. triseriatus from treeholes following the establishment of A. albopictus in this microhabitat in 1991. However, A. albopictus had significantly higher metamorphic success and showed a significant increase in mean crowding on A. triseriatus in treeholes monitored from 1991 to 1999. In urban and suburban sites, A. triseriatus was uncommon in abandoned tires even before the arrival of A. albopictus. In some wooded sites, there is evidence for a decline in numbers of A. triseriatus in used tires and cemetery vases, but the native species has not been excluded from these habitats. Overall, the negative effect of A. albopictus on A. triseriatus has been less severe than that on A. aegypti. Experiments outdoors in surrogate treeholes showed that A. albopictus was more successful than A. triseriatus in survival to emergence in the presence of predatory larvae of the native mosquito Toxorhynchites rutilus when first instar predators encountered both prey species shortly after their hatch. Eggs of A. albopictus also hatched more rapidly than those of A. triseriatus, giving larvae of the invasive species an initial developmental advantage to escape predation. Biological traits that may favor A. albopictus are offset partly by greater treehole occupancy by A. triseriatus and the infrequency of the invasive mosquito species in undisturbed woodlands, which mitigates against displacement of the native mosquito in these habitats.  相似文献   

6.
Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ'') was lowest in the dry treatment. Aedes albopictus λ'' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ'' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A. triseriatus and A. albopictus, probably enhancing negative competitive effects of A. albopictus on A. triseriatus in areas that experience drought.  相似文献   

7.
When a species is introduced into a new location, it may escape, at least temporarily, from its natural enemies. In field surveys, we found that when the exotic, invasive mosquito, Aedes albopictus, invades new sites, it initially experiences reduced infection by its gut parasite, Ascogregarina taiwanensis. To determine the effect of this escape from parasitism on the competitive ability of A. albopictus, we performed a laboratory competition experiment in which infected and uninfected A. albopictus larvae were reared in microcosms alone and in competition with larvae of the native mosquito, Ochlerotatus triseriatus. We analyzed the effect of parasitism by A. taiwanensis on A. albopictus performance when subjected to intra- and interspecific competition across a range of larval densities, as well as the effect of A. albopictus parasitism by A. taiwanensis on the competitive impact of A. albopictus on O. triseriatus. At a density of 30 O. triseriatus larvae, O. triseriatus survivorship was significantly reduced by the addition of 30 unifected A. albopictus, but not by addition of 30 infected A. albopictus, and not by addition of 15 A. albopictus whether infected or uninfected. Although estimated finite rate of population increase (') showed similar trends, and was significantly affected by treatments, no pairwise differences in rate of increase were significant. Infection by A. taiwanensis also significantly prolonged A. albopictus female development time and reduced the intraspecific competitive effect of increased density of A. albopictus, but did not affect A. albopictus survivorship, mass, or estimated finite rate of population increase. Thus, when A. albopictus escapes from this parasite as it colonizes new sites, this escape may give it a small, but significant, added competitive advantage over O. triseriatus, which may facilitate range expansion of A. albopictus and enhance A. albopictus's initial impact on resident species.  相似文献   

8.

Priority effects (PE), wherein species colonizing a habitat early have a negative impact on later colonizers, can have profound and legacy effects on community organization. In temperate zones, larval mosquito habitats are emptied each year in the winter and recolonized in the spring. There are phenological differences among common species but the role of PE in these communities is largely unexplored. Aedes albopictus, the invasive tiger mosquito, is considered a superior competitor to resident species during the larval phase when conditions are initiated with same-staged heterospecific larvae. However in nature, Ae. albopictus hatches, and resumes activity, later in the spring than other species, suggesting it encounters larger later developed individuals, and denser populations, of species such as Aedes triseriatus. Additionally, despite their competitive inferiority, these species often coexist with Ae. albopictus in larval habitats, with Ae. albopictus often occurring at relatively low abundances in sylvan habitats. Using lab and near field experiments, we tested the hypothesis that PE with early hatching species reduces survivorship and population growth for the invasive Ae. albopictus. When Ae. albopictus larvae encountered larger, later developed heterospecific larvae at greater densities, under controlled lab conditions and in artificial and natural mesocosms, they experienced significant reductions in survival and estimated finite rate of population increase. Additionally, we found that intraguild predation of Ae. triseriatus on Ae. albopictus may be an important mechanism through which PE works. We conclude that PE is a potential mechanism for coexistence between invasive and resident mosquitoes and should be further explored.

  相似文献   

9.
Invasive arthropods that vector pathogens have the potential to influence pathogen transmission both directly, by becoming a novel pathogen vector, or indirectly, by interacting with native vectors. Adult mosquito size is influenced by food availability in the larval stage, and smaller, nutrient-deprived mosquitoes are, in some studies, more efficient viral vectors in the laboratory. This is the first study to examine the indirect impacts that larval competition between Aedes albopictus, an introduced mosquito species, and Ochlerotatus triseriatus, a native mosquito species and the primary vector for La Crosse virus (LACV) in the US, has on native mosquito larval survival, adult size, and vector competence. A. albopictus presence decreased Oc. triseriatus larval survival, but surviving Oc. triseriatus females were larger, potentially owing to a release from intraspecific competition. These larger, native females were more likely to develop both midgut and disseminated LACV infections than females emerging from monospecific treatments. Collectively, these results suggest a need to better understand the ecology of both native and invasive vector species, their interactions, and the potential for those interactions to alter vector-borne disease transmission.  相似文献   

10.
Interactions between invasive species can have important consequences for the speed and impact of biological invasions. Containers occupied by the invasive mosquito, Aedes albopictus Skuse, may be sensitive to invasive plants whose leaves fall into this larval habitat. To examine the potential for interactions between invasive leaf species and larval A. albopictus, we conducted a field survey of leaf material found with A. albopictus in containers in Palm Beach County, Florida and measured density dependent responses of A. albopictus larvae to two invasive and one native leaf species in laboratory experiments. We found increased diversity of leaf species, particularly invasive species, in areas further from the urbanized coast, and a significant positive association between the presence of Schinus terebinthifolious (Brazilian pepper) and the abundance of A. albopictus. In laboratory experiments, we determined that larval growth and survivorship were significantly affected by both larval density and leaf species which, in turn, resulted in higher population performance on the most abundant invasive species (Brazilian pepper) relative to the most abundant native species, Quercus virginiana (live oak). These results suggest invasive leaf species can alleviate density dependent reductions in population performance in A. albopictus, and may contribute to its invasion success and potential to spread infectious disease.  相似文献   

11.
Container-inhabiting Aedes mosquitoes are successful invaders and important arthropod-borne disease vectors worldwide. In North America, a subtropical assemblage containing introduced Aedes albopictus and Aedes aegypti and the native Aedes triseriatus have served as a model for investigating ecological interactions during invasions and focused on the outcomes at the larval stages. We report a hypothesis driven study of a more temperate container Aedes assemblage at the adult population level monitored in the state of New Jersey during a 9-year period. The invasive A. albopictus and Aedes japonicus abundances increased by a factor of two, whereas A. triseriatus abundance decreased by a factor of three. Spatiotemporal analysis indicated these trends were coincident especially in the areas invaded by A. albopictus, leading to partial displacement of A. triseriatus. Although the invasive species reached peak abundance in highly urbanized areas, the native species’ rate of decline was similar across the urbanization gradient. Higher winter temperatures and precipitation favored increased A. albopictus abundance suppressing A. triseriatus adult populations in turn, whereas A. japonicus abundance was promoted by summer precipitation. The results validate the conceptual framework developed for subtropical container Aedes and suggest that the current climatic trends will favor further spread of A. albopictus, amplifying public health concerns.  相似文献   

12.
This study assessed the risk of larval displacement of the eastern treehole mosquito, Aedes triseriatus, and the northern house mosquito, Culex pipiens, by Aedes albopictus, the Asian tiger mosquito, during the establishment and successional stages of novel larval mosquito treehole and ground‐container habitats in the state of New Jersey, U.S.A. Culex pipiens and Culex restuans were the first mosquito species to colonize ground‐container habitats and were the dominant larval species throughout the study period, whereas Ae. albopictus was late to colonize ground habitats and accounted for less than 15% of weekly larval collections once established. Ae. albopictus had a much stronger community presence within treehole ovitraps; however, Ae. albopictus never reached the average larval densities of the expected primary colonizer, Ae. triseriatus. Throughout the study period, the weekly abundances of Ae. triseriatus and Ae. albopictus were positively correlated and there were no significant differences between the abundances of each species. The larval dominance of Ae. triseriatus appears to be enhanced by the presence of Toxorhynchites rutilus septentrionalis, a large predatory mosquito species. When Tx. rut. septentrionalis was present, mature larvae (3rd–4th instar) of Ae. albopictus were also present in only 16.7% of collections, whereas mature larvae of Ae. triseriatus were collected concurrently with Tx. rut. septentrionalis in 53.8% of collections. These data suggest that Ae. triseriatus is at a greater risk of displacement by Ae. albopictus than are Cx. pipiens and Cx. restuans.  相似文献   

13.
14.
Biotic resistance from native predators can play an important role in regulating or limiting exotic prey. We investigate how global warming potentially alters the strength and spatial extent of these predator–prey interactions in aquatic insect ecosystems. As a simple model system, we use rock pools in streams of rainforests of Hawaii, which contain the beautiful Hawaiian damselfly Megalagrion calliphya as predator and the invasive southern house mosquito Culex quinquefasciatus as prey. This abundant mosquito is the major vector of avian malaria transmission to native forest birds. We use mathematical modeling to evaluate the potential impacts of damselfly predation and temperature on mosquito population dynamics. We model this predator–prey system along an elevational gradient (749-1952 m elevation) and assess the effect of 1°C and 2°C climate warming scenarios as well as the effects of El Niño and La Niña oscillations, on predator–prey dynamics. Our results indicate that the strength of biotic resistance of native predators on invasive prey may decrease with increasing temperature because demographic rates of predator and prey are differentially affected by temperature. Future warming could therefore increase the abundance of invasive species by releasing them from predation pressure. If the invasive species is a disease vector, these shifts could increase the impact of disease on both humans and wildlife.  相似文献   

15.
The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae). Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR), where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa.  相似文献   

16.
17.
Invasion success and species coexistence are often mediated by species interactions across patchily distributed habitats and resources. The invasive mosquito Aedes japonicus japonicus has established in the North American range of the competitively superior resident congener, Aedes albopictus, and the predatory native mosquito Toxorhynchites rutilus. We tested predictions for two hypotheses of invasion success and species coexistence: keystone predation and spatial partitioning. We tested competition between A. japonicus japonicus and A. albopictus with or without T. rutilus in laboratory microcosms, and measured abundances of A. japonicus japonicus, A. albopictus, other resident competing mosquito species, and the presence of T. rutilus among tree holes and tires in metropolitan Washington, DC. In laboratory microcosms, A. albopictus was competitively dominant over A. japonicus japonicus, which is consistent with the few prior studies of competition between these two Aedes species. T. rutilus predation severely lowered performances of both Aedes species but more severely lowered A. japonicus japonicus performance than A. albopictus performance when all three species co-occurred, thus yielding no evidence for keystone predation. Consistent with the spatial partitioning hypothesis, A. japonicus japonicus was negatively correlated and independently aggregated with A. albopictus and all combined resident mosquito competitors and was not associated with T. rutilus among field containers. These results suggest that predation from T. rutilus and competition from A. albopictus are barriers to the spread of A. japonicus japonicus, but that A. japonicus japonicus may escape these interspecific effects by utilizing spatially partitioned container habitats.  相似文献   

18.

Background

The auto-dissemination approach has been shown effective at treating cryptic refugia that remain unaffected by existing mosquito control methods. This approach relies on adult mosquito behavior to spread larvicide to breeding sites at levels that are lethal to immature mosquitoes. Prior studies demonstrate that ‘dissemination stations,’ deployed in mosquito-infested areas, can contaminate adult mosquitoes, which subsequently deliver the larvicide to breeding sites. In some situations, however, preventative measures are needed, e.g., to mitigate seasonal population increases. Here we examine a novel approach that combines elements of autocidal and auto-dissemination strategies by releasing artificially reared, male mosquitoes that are contaminated with an insecticide.

Methodology

Laboratory and field experiments examine for model-predicted impacts of pyriproxyfen (PPF) directly applied to adult male Aedes albopictus, including (1) the ability of PPF-treated males to cross-contaminate females and to (2) deliver PPF to breeding sites.

Principal Findings

Similar survivorship was observed in comparisons of PPF-treated and untreated males. Males contaminated both female adults and oviposition containers in field cage tests, at levels that eliminated immature survivorship. Field trials demonstrate an ability of PPF-treated males to transmit lethal doses to introduced oviposition containers, both in the presence and absence of indigenous females. A decline in the Ae. albopictus population was observed following the introduction of PPF-treated males, which was not observed in two untreated field sites.

Conclusions/Significance

The results demonstrate that, in cage and open field trials, adult male Ae. albopictus can tolerate PPF and contaminate, either directly or indirectly, adult females and immature breeding sites. The results support additional development of the proposed approach, in which male mosquitoes act as vehicles for insecticide delivery, including exploration of the approach with additional medically important mosquito species. The novelty and importance of this approach is an ability to safely achieve auto-dissemination at levels of intensity that may not be possible with an auto-dissemination approach that is based on indigenous females. Specifically, artificially-reared males can be released and sustained at any density required, so that the potential for impact is limited only by the practical logistics of mosquito rearing and release, rather than natural population densities and the self-limiting impact of an intervention upon them.  相似文献   

19.
《Journal of Asia》2020,23(1):124-131
Predation and cannibalism can affect the co-existence of mosquito species or the assemblage of mosquito species (i.e., community structure). In this study, predatory feeding patterns and cannibalism of larvae of Armigeres subalbatus mosquitoes were quantified under laboratory conditions using Aedes albopictus and Culex uniformis larvae as prey organisms. Rate of consumption of prey larvae and the rate of cannibalism of 1st to 4th instar larvae of Armigeres subalbatus were reported at 24 h intervals with and without alternative food supplement. Both the 3rd and 4th instar larvae of Ar. subalbatus showed a substantial predation on the larvae of Ae. albopictus (33.6 ± 4.4) and Cx uniformis (47.3 ± 7.6). The cannibalism of the predatory larvae was strongly correlated to the larval density (r = 0.9). The predator and the prey density and the given food type were significant factors that determined the rate of pupation, death and the emergence as adults. A significant relationship was shown for the co-occurrence of predatory larvae and the prey larvae at the 85 natural breeding habitats observed at the field (χ2 = 74.4, p < 0.001). Nine breeding sites (10.6%) were positive for both prey and predatory larvae. Our study showed robust information about the predatory and cannibalistic behavior of Ar. subalbatus larvae emphasizing their role in managing the population structure of mosquito communities.  相似文献   

20.
Surplus or ‘wasteful’ killing of uneaten prey has been documented in the fourth larval instar of various species of the mosquito genus Toxorhynchites that occur in treeholes and other phytotelmata. Here we document surplus killing by the predatory midge Corethrella appendiculata, which in Florida cohabits treeholes and artificial containers with larvae of Toxorhynchites rutilus. Provided with a surfeit of larval mosquito prey, surplus killing was observed only in the fourth instar of C. appendiculata, peaking in intensity in the final 24 h prior to pupation, as observed for Toxorhynchites spp. Attack sites identified from videotaped encounters with mosquito prey were divided among head, thorax, abdomen, and siphon. Consumed mosquito larvae (n = 70) were attacked primarily on the head (46%) or siphon (34%), but surplus-killed prey (n = 30) were attacked predominantly on the thorax (83%). Despite its independent evolution among different insect species in aquatic container habitats, the functional significance of prepupal surplus killing remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号