首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Gram-negative bacterium Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumoniae, a lethal respiratory infectious disease causing great economic losses in the swine industry worldwide. In order to better interpret the genetic background of serotypic diversity, nine genomes of A. pleuropneumoniae reference strains of serovars 1, 2, 4, 6, 9, 10, 11, 12, and 13 were sequenced by using rapid high-throughput approach. Based on 12 genomes of corresponding serovar reference strains including three publicly available complete genomes (serovars 3, 5b, and 7) of this bacterium, we performed a comprehensive analysis of comparative genomics and first reported a global genomic characterization for this pathogen. Clustering of 26,012 predicted protein-coding genes showed that the pan genome of A. pleuropneumoniae consists of 3,303 gene clusters, which contain 1,709 core genome genes, 822 distributed genes, and 772 strain-specific genes. The genome components involved in the biogenesis of capsular polysaccharide and lipopolysaccharide O antigen relative to serovar diversity were compared, and their genetic diversity was depicted. Our findings shed more light on genomic features associated with serovar diversity of A. pleuropneumoniae and provide broader insight into both pathogenesis research and clinical/epidemiological application against the severe disease caused by this swine pathogen.Actinobacillus pleuropneumoniae, a Gram-negative facultative anaerobic encapsulated coccobacillus, belongs to the Actinobacillus genus of the Pasteurellaceae family (19). A. pleuropneumoniae is a primary bacterial etiologic agent of porcine contagious pleuropneumonia, a severe respiratory disease leading to great economic losses to the global swine industry (7). The cases usually display pleuropneumonia and pulmonary lesions characterized by serious hemorrhage and necrosis. To date, several factors involved in the virulence of A. pleuropneumoniae have been described, including Apx exotoxins, capsular polysaccharides (CPS), lipopolysaccharides (LPS), outer membrane proteins, iron-acquisition proteins and adhesin factors (11, 19, 24). However, the genetic differences of pathogenesis remain poorly characterized and are worth interpreting from the perspective of comparative genomics for this bacterium.Thus far, 15 serovars and two biotypes of A. pleuropneumoniae have been recognized, with great variations in virulence and interlocal distributions (6). The predominant serovar-specific antigens are composed of CPS, which could rigorously define serovars of A. pleuropneumoniae (6, 34). Antigenic differences in the LPS can further determine A. pleuropneumoniae subtypes within a same capsular serovar (13). The metabolic and virulent characteristics of this pathogen have been systematically described based on the prior knowledge and two complete genomes (18, 47), but the molecular basis and evolutionary mechanism of serotypic diversity are still not well explained due to the lack of sequence information. To investigate the associations of serovar diversity with the underlying genetic components, more serovar-related genomic islands involved in the biosynthesis of capsular and lipopolysaccharide antigens should be decoded at the pan-genome level of A. pleuropneumoniae. At present, through the next-generation of sequencing technique (454 GS FLX pyrosequencing platform), more and more bacterial species, subspecies or typical strains have been quickly sequenced, such as eight species in the Yersinia genus (9), 17 strains of Streptococcus pneumoniae (22), and 5 strains from different Francisella tularensis subspecies (8). Multiple genome sequences from different strains of a single species can offer comprehensive information to explore the relationship between genotypes and phenotypes and to further discover additional genetic markers for clinical purpose.In the present study, we sequenced the A. pleuropneumoniae genomes of nine reference strains of serovars 1, 2, 4, 6, 9, 10, 11, 12, and 13. Together with three public complete genome sequences of A. pleuropneumoniae serovars 3, 5b, and 7, the analysis of comparative genomics was performed to report a global genomic characterization of this pathogenic bacterium. The acquisition and loss of genome compositions that contribute to virulence and serovar diversity were identified. The genetic loci involved in the biogenesis of capsule and O-specific polysaccharide were compared, and their vital roles in serotypic diversity were investigated.  相似文献   

3.
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.  相似文献   

4.
LuxS, a conserved bacterial enzyme involved in the activated methyl cycle, catalyzes S-ribosylhomocysteine (SRH) into homocysteine and AI-2 (the inter-species quorum-sensing signal molecule). This enzyme has been reported to be essential for the survival of Actinobacillus pleuropneumoniae in its natural host. Therefore, it is a potential drug target against A. pleuropneumoniae, an important swine respiratory pathogen causing great economic losses in the pig industry worldwide. In this study, the enzymatic activity determination method was established using the recombinant LuxS of A. pleuropneumoniae. Thirty-five compounds similar to the shape of SRH were screened from the Specs compound library by the software vROCS and were evaluated for LuxS inhibition. Three compounds could inhibit LuxS activity. Two of them were confirmed to be competitive inhibitors and the third one was uncompetitive. All the three compounds displayed inhibitory effects on the growth of A. pleuropneumoniae and two other important swine pathogens, Haemophilis parasuis and Streptococcus suis, with MIC50 values ranging from 11 to 51 μg/ml. No significant cytotoxic effect of the compounds was detected on porcine PK-15 cells at the concentration which showed inhibitory effect on bacterial growth. These results suggest that LuxS is an ideal target to develop antimicrobials for porcine bacterial pathogens. The three LuxS inhibitors identified in this study can be used as lead compounds for drug design.  相似文献   

5.
6.
Here, we report the first complete genome sequence of Actinobacillus suis, an important opportunistic pathogen of swine. By comparing the genome sequence of A. suis with those of other members of the family Pasteurellaceae, we hope to better understand the role of these organisms in health and disease in swine.  相似文献   

7.
Actinobacillus spp. are Gram-negative bacteria associated with mucosal membranes. While some are commensals, others can cause important human and animal diseases. A. pleuropneumoniae causes severe fibrinous hemorrhagic pneumonia in swine but not systemic disease whereas other species invade resulting in septicemia and death. To understand the invasive phenotype of Actinobacillus spp., complete genomes of eight isolates were obtained and pseudogenomes of five isolates were assembled and annotated. Phylogenetically, A. suis isolates clustered by surface antigen type and were more closely related to the invasive A. ureae, A. equuli equuli, and A. capsulatus than to the other swine pathogen, A. pleuropneumoniae. Using the LS-BSR pipeline, 251 putative virulence genes associated with serum resistance and invasion were detected.To our knowledge, this is the first genome-wide study of the genus Actinobacillus and should contribute to a better understanding of host tropism and mechanisms of invasion of pathogenic Actinobacillus and related genera.  相似文献   

8.
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae has led to severe economic losses in the pig industry worldwide. A. pleuropneumoniae displays various levels of antimicrobial resistance, leading to the dire need to identify new drug targets. Protein–protein interaction (PPI) network can aid the identification of drug targets by discovering essential proteins during the life of bacteria. The aim of this study is to identify drug target candidates of A. pleuropneumoniae from essential proteins in PPI network. The homologous protein mapping method (HPM) was utilized to construct A. pleuropneumoniae PPI network. Afterwards, the subnetwork centered with H-NS was selected to verify the PPI network using bacterial two-hybrid assays. Drug target candidates were identified from the hub proteins by analyzing the topology of the network using interaction degree and homologous comparison with the pig proteome. An A. pleuropneumoniae PPI network containing 2737 non-redundant interaction pairs among 533 proteins was constructed. These proteins were distributed in 21 COG functional categories and 28 KEGG metabolic pathways. The A. pleuropneumoniae PPI network was scale free and the similar topological tendencies were found when compared with other bacteria PPI network. Furthermore, 56.3% of the H-NS subnetwork interactions were validated. 57 highly connected proteins (hub proteins) were identified from the A. pleuropneumoniae PPI network. Finally, 9 potential drug targets were identified from the hub proteins, with no homologs in swine. This study provides drug target candidates, which are promising for further investigations to explore lead compounds against A. pleuropneumoniae.  相似文献   

9.
Actinobacillus pleuropneumoniae is among the most important pathogens worldwide in pig production. The agent can cause severe economic losses due to decreased performance, acute or chronic pleuropneumonia and an increased incidence of death. Therapeutics cannot be used in a sustainable manner, and vaccination is not always available, but discovering more about host defence and disease mechanisms might lead to new methods of prophylaxis. The aim of the present study was to detect quantitative trait loci (QTL) associated with resistance/susceptibility to A. pleuropneumoniae. Under controlled conditions, 170 F2 animals of a Hampshire/Landrace family, with known differences in founder populations regarding A. pleuropneumoniae resistance, were challenged with an A. pleuropneumoniae serotype 7 aerosol followed by a detailed clinical, radiographic, ultrasonographic, pathological and bacteriological examination. F2 pigs were genotyped with 159 microsatellite markers. Significant QTL were identified on Sus scrofa chromosomes (SSC) 2, 6, 12, 13, 16, 17 and 18. They explained 6–22 % of phenotypic variance. One QTL on SSC2 reached significance on a genome-wide level for five associated phenotypic traits. A multiple regression analysis revealed a combinatory effect of markers SWR345 (SSC2) and S0143 (SSC12) on Respiratory Health Score, Clinical Score and the occurrence of death. The results indicate the genetic background of A. pleuropneumoniae resistance in swine and provide new insights into the genetic architecture of resistance/susceptibility to porcine pleuropneumonia. The results will be helpful in identifying the underlying genes and mechanisms.  相似文献   

10.
We investigated whether primers able to specifically amplify a 0.7-kb DNA fragment from the conserved cpx genes could be applied to analyze A. pleuropneumoniae field isolates. The specific cpx primers were tested on 120 strains of A. pleuropneumoniae and other NAD-dependent field isolates from healthy and diseased animals to analyze A. pleuropneumoniae isolates from pigs in Brazil. We found that PCR and hybridization were able to discriminate between isolates of A. pleuropneumoniae and other bacteria. The 0.7-kb cpx DNA fragments were amplified from all 63 A. pleuropneumoniae isolates from herds with clinical symptoms and were isolated from lesions of acute cases of swine pleuropneumonia, both serotypable and nonserotypable. The PCR was also applied to 57 field isolates obtained from animals of apparently healthy herds, and the amplified cpx product was present in four serotypable and only two out of eleven A. pleuropneumoniae nonserotypable isolates. All nonserotypable A. pleuropneumoniae isolates revealed the apxA amplification pattern compatible with previously known serotypes. Some nonserotypable isolates might represent a population of isolates that originally were serotypable but lost the ability to react with serotype-specific antisera or might belong to novel serotypes. The PCR method applied is highly sensitive for serotypable A. pleuropneumoniae strains and for nonserotypable strains isolated from acute cases of swine pleuropneumoniae in Brazil. Received: 13 June 2002 / Accepted: 5 August 2002  相似文献   

11.
Multiplex PCR has been developed for parallel identification of Actinobacillus pleuropneumoniae, Pasteurella multocida and Haemophilus parasuis, important pathogens of swine, responsible for considerable economic losses in swine industry. Multiplex PCR and bacteriological cultivation was used to analyze lung samples from slaughterhouse pigs. From a total of 219 lung samples, 164 (74.9 %) were positive for P. multocida, 45 (20.5 %) for A. pleuropneumoniae and 4 (1.83 %) for H. parasuis. Bacteriological examination revealed that 145 samples (66.2 %) were positive for P. multocida, 31 (14.2 %) for A. pleuropneumoniae and 2 (0.91 %) for H. parasuis.  相似文献   

12.
The OmlA protein is a virulence factor of Actinobacillus pleuropneumoniae, an important pathogen in pigs. The polymorphisms present in the omlA gene sequence of 15 reference serotypes of A. pleuropneumoniae and non-serotypable isolates were assessed to determine the possible evolutionary relationship among them and to validate the importance of this gene as a molecular marker for the characterization of this bacterium. Divergence among the 15 serotypes of A. pleuropneumoniae probably resulted initially from two major evolutionary events that led to subsequent differentiation into nine groups. This differentiation makes it possible to characterize most of the serotypes by using bionformatics, thereby avoiding problems with immunological cross-reactivity. A conserved α-helix common to all the serotypes was most likely involved in connecting the protein to the outer membrane and acting as a signal peptide. A previously unknown gene duplication was also identified and could contribute to the genetic variability that makes it difficult to serotype some isolates. Our data support the importance of the omlA gene in the biology of A. pleuropneumoniae and provide a new area of research into the OmlA protein.  相似文献   

13.
Streptococcus suis is a major swine pathogen responsible for significant, worldwide economic losses in the swine industry, in addition to being an emerging zoonotic agent. Strains of serotype 2 are the most commonly associated with infections causing meningitis, endocarditis, and septicemia. Here we present the genome sequence of S. suis serotype 2 strain S735.  相似文献   

14.
The pleuropneumonia caused by Actinobacillus pleuropneumoniae (App) is one the most important swine respiratory diseases. Biochemical and serological tests are widely applied for App diagnosis and characterization. However, in some isolates, conflicting results are found. The present work focus on the characterization of 29 isolates biochemically classified as A. pleuropneumoniae, collected from swine in herds with or without a clinical history of pleuropneumonia. Sixteen isolates were from healthy swine, initially classified as nonserotypable A. pleuropneumoniae; they displayed differences in the molecular characterization patterns of App (genes cpx and apxI, II, and III). Those bacteria that could not be serotyped were submitted to rDNA 16S sequencing. All 29 isolates were analyzed by PCR for the presence of the apxIVA gene. Thirteen isolates (45%) were confirmed to be A. pleuropneumoniae by PCR, nine being from diseased animals (31%) and four from healthy animals (14%) with conclusive serotyping. The rDNA 16S sequencing was used to classify the other 16 isolates in related species other than A. pleuropneumoniae, resulting in eleven A. minor, three A. porcinus, and two Pasteurella sp. Because of conflicting results between biochemical tests and rDNA 16S sequencing, the biochemical characterization was repeated, and the new results were in agreement with the rDNA 16S sequencing data. Biochemical characterization proved to be efficient for the majority of the A. pleuropneumoniae isolates. Nevertheless, conventional tests can render conflicting results, and other methodologies, such as amplification of A. pleuropneumoniae specific apxIVA gene and rDNA 16S sequencing, are very useful for improved classification. We also observed a great variety in rDNA 16S sequences from different A. minor isolates.  相似文献   

15.
Endogenous retroviruses of swine are a concern in the use of pig-derived tissues for xenotransplantation into humans. The nucleotide sequence of porcine endogenous retrovirus taken from lymphocytes of miniature swine (PERV-MSL) has been characterized. PERV-MSL is a type C retrovirus of 8,132 bp with the greatest nucleic acid sequence identity to gibbon ape leukemia virus and murine leukemia virus. Constitutive production of PERV-MSL RNA has been detected in normal leukocytes and in multiple organs of swine. The copy numbers of full-length PERV sequences per genome (approximately 8 to 15) vary among swine strains. The open reading frames for gag, pol, and env in PERV-MSL have over 99% amino acid sequence identity to those of Tsukuba-1 retrovirus and are highly homologous to those of endogenous retrovirus of cell line PK15 (PK15-ERV). Most of the differences in the predicted amino acid sequences of PK15-ERV and PERV-MSL are in the SU (cell attach- ment) region of env. The existence of these PERV clones will enable studies of infection by endogenous retroviruses in xenotransplantation.  相似文献   

16.
The intestinal spirochete Brachyspira hyodysenteriae is an important pathogen in swine, causing mucohemorrhagic colitis in a disease known as swine dysentery. Based on the detection of significant linkage disequilibrium in multilocus sequence data, the species is considered to be clonal. An analysis of the genome sequence of Western Australian B. hyodysenteriae strain WA1 has been published, and in the current study 19 further strains from countries around the world were sequenced with Illumina technology. The genomes were assembled and aligned to over 97.5% of the reference WA1 genome at a percentage sequence identity better than 80%. Strain regions not aligned to the reference ranged between 0.2 and 2.5%. Clustering of the strain genes found on average 2,354 (88%) core genes, 255 (8.6%) ancillary genes and 77 (2.9%) unique genes per strain. Depending on the strain the proportion of genes with 100% sequence identity to WA1 ranged from 85% to 20%. The result is a global comparative genomic analysis of B. hyodysenteriae genomes revealing potential differential phenotypic markers for numerous strains. Despite the differences found, the genomes were less varied than those of the related pathogenic species Brachyspira pilosicoli, and the analysis supports the clonal nature of the species. From this study, a public genome resource has been created that will serve as a repository for further genetic and phenotypic studies of these important porcine bacteria. This is the first intra-species B. hyodysenteriae comparative genomic analysis.  相似文献   

17.
Actinobacillus pleuropneumoniae is the causative agent of porcine fibrinohemorrhagic necrotizing pleuropneumonia. We have previously identified the lipopolysaccharides (LPS) as the major adhesin of A. pleuropneumoniae involved in adherence to porcine respiratory tract cells. In the present study, adherence of A. pleuropneumoniae to porcine tracheal frozen sections was inhibited by homologous monovalent Fab fragments produced from monoclonal antibodies 5.1 G8F10 and 102-G02 directed, respectively, against the A. pleuropneumoniae serotype 1 or serotype 2 O-antigens. These results confirm the important role played by LPS in adherence of A. pleuropneumoniae and suggest that these adhesins might represent good vaccine candidates. We also investigated the presence of A. pleuropneumoniae receptors in tracheal cell preparations from piglets of four different breeds. Using Far-Western binding assays, we identified proteins recognized by whole cells of A. pleuropneumoniae reference strains for serotype 1 and 2, and local isolates belonging to the same serotypes, and also recognized by extracted LPS from both reference strains. We confirmed the proteinaceous nature of these LPS-binding molecules by their staining with Coomassie brilliant blue, sensitivity to proteinase K digestion, resistance to sodium m-periodate oxidation, and their inability to stain with glycoprotein-specific reagents. Four low-molecular-mass bands (14–17 kDa) seemed to correspond to histones. We also identified proteins at Mr 38,500 that could represent putative receptors for A. pleuropneumoniae LPS in swine respiratory tract cells. Received: 16 April 1999 / Accepted: 1 July 1999  相似文献   

18.
Complete Genome Sequence of Haemophilus parasuis SH0165   总被引:2,自引:0,他引:2  
Haemophilus parasuis is the causative agent of Glässer's disease, which produces big losses in swine populations worldwide. H. parasuis SH0165, belonging to the dominant serovar 5 in China, is a clinically isolated strain with high-level virulence. Here, we report the first completed genome sequence of this species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号