首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC) in patients with cirrhosis without overt hepatic encephalopathy (HE) using resting state functional MRI.

Methodology/Principal Findings

Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE) and 40 cirrhotic patients without MHE (non-HE)), and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs) were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST]) scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC), bilateral middle cingulate cortex (MCC), bilateral superior temporal gyri (STG)/middle temporal gyri (MTG), bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients.

Conclusions/Significance

Disrupted functional connectivity in ACC was found in cirrhotic patients which further deteriorated with the increasing severity of HE and correlated cognitive dysfunction in cirrhotic patients.  相似文献   

2.
Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI) have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC) analysis and voxel-mirrored homotopic connectivity (VMHC) techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC) and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected) in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI.  相似文献   

3.

Purpose

Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA).

Methods

Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week.

Results

There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (p<0.0001) and higher CIAS (p<0.0001) and BIS-11 (p = 0.01) scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.

Conclusion

Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.  相似文献   

4.

Objectives

Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI) to investigate the functional connectivity changes of the basolateral amygdala (BLA) and centromedial amygdala (CMA) in the brain after 36 h of TSD.

Materials and Methods

Fourteen healthy adult men aged 25.9±2.3 years (range, 18–28 years) were enrolled in a within-subject crossover study. Using the BLA and CMA as separate seed regions, we examined resting-state functional connectivity with fMRI during rested wakefulness (RW) and after 36 h of TSD.

Results

TSD resulted in a significant decrease in the functional connectivity between the BLA and several executive control regions (left dorsolateral prefrontal cortex [DLPFC], right dorsal anterior cingulate cortex [ACC], right inferior frontal gyrus [IFG]). Increased functional connectivity was found between the BLA and areas including the left posterior cingulate cortex/precuneus (PCC/PrCu) and right parahippocampal gyrus. With regard to CMA, increased functional connectivity was observed with the rostral anterior cingulate cortex (rACC) and right precentral gyrus.

Conclusion

These findings demonstrate that disturbance in amygdala related circuits may contribute to TSD psychophysiology and suggest that functional connectivity studies of the amygdala during the resting state may be used to discern aberrant patterns of coupling within these circuits after TSD.  相似文献   

5.
The recovery of motor functions is accompanied by brain reorganization, and identifying the inter-hemispheric interaction post stroke will conduce to more targeted treatments. However, the alterations of bi-hemispheric coordination pattern between homologous areas in the whole brain for chronic stroke patients were still unclear. The present study focuses on the functional connectivity (FC) of mirror regions of the whole brain to investigate the inter-hemispheric interaction using a new fMRI method named voxel-mirrored homotopic connectivity (VMHC). Thirty left subcortical chronic stroke patients with pure motor deficits and 37 well-matched healthy controls (HCs) underwent resting-state fMRI scans. We employed a VMHC analysis to determine the brain areas showed significant differences between groups in FC between homologous regions, and we explored the relationships between the mean VMHC of each survived area and clinical tests within patient group using Pearson correlation. In addition, the brain areas showed significant correlations between the mean VMHC and clinical tests were defined as the seed regions for whole brain FC analysis. Relative to HCs, patients group displayed lower VMHC in the precentral gyrus, postcentral gyrus, inferior frontal gyrus, middle temporal gyrus, calcarine gyrus, thalamus, cerebellum anterior lobe, and cerebellum posterior lobe (CPL). Moreover, the VMHC of CPL was positively correlated with the Fugl–Meyer Score of hand (FMA-H), while a negative correlation between illness duration and the VMHC of this region was also detected. Furthermore, we found that when compared with HCs, the right CPL exhibited reduced FC with the left precentral gyrus, inferior frontal gyrus, inferior parietal lobule, middle temporal gyrus, thalamus and hippocampus. Our results suggest that the functional coordination across hemispheres is impaired in chronic stroke patients, and increased VMHC of the CPL is significantly associated with higher FMA-H scores. These findings may be helpful in understanding the mechanism of hand deficit after stroke, and the CPL may serve as a target region for hand rehabilitation following stroke.  相似文献   

6.
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.  相似文献   

7.
Some researchers have suggested that the default mode network (DMN) plays an important role in the pathological mechanisms of Alzheimer’s disease (AD). To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI), electrophysiological responses were analyzed from 21 mild Alzheimer’s disease (AD) and 21 mild cognitive impairment (MCI) patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE) combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE). In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.  相似文献   

8.
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.  相似文献   

9.
Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.  相似文献   

10.

Introduction

Current pathophysiological theories of schizophrenia highlight the role of altered brain functional and anatomical connectivity. The cognitive division of anterior cingulate cortex (ACC-cd) is a commonly reported abnormal brain region in schizophrenia for its importance in cognitive control process. The aim of this study was to investigate the functional and anatomical connectivity of ACC-cd and its cognitive and clinical manifestation significance in schizophrenia by using the resting-state functional magnetic resonance imaging (fMRI) and the diffusion tensor imaging (DTI).

Methods

Thirty-three medicated schizophrenics and 30 well-matched health controls were recruited. Region-of-interest (ROI)-based resting-state functional connectivity analysis and Tract-Based Spatial Statistics (TBSS) were performed on 30 patients and 30 controls, and 24 patients and 29 controls, respectively. The Pearson correlation was performed between the imaging measures and the Stroop performance and scores of the Positive and Negative Syndrome Scale (PANSS), respectively.

Results

Patients with schizophrenia showed significantly abnormal in the functional connectivity and its hemispheric asymmetry of the ACC-cd with multiple brain areas, e.g., decreased positive connectivity with the bilateral putamen and caudate, increased negative connectivity with the left posterior cingulated cortex (PCC), increased asymmetry of connectivity strength with the contralateral inferior frontal gyrus (IFG). The FA of the right anterior cingulum was significantly decreased in patients group (p = 0.014). The abnormal functional and structural connectivity of ACC-cd were correlated with Stroop performance and the severity of the symptoms in patients.

Conclusions

Our results suggested that the abnormal connectivity of the ACC-cd might play a role in the cognitive impairment and clinical symptoms in schizophrenia.  相似文献   

11.

Background

Previous studies have demonstrated that structural deficits and functional connectivity imbalances might underlie the pathophysiology of obsessive-compulsive disorder (OCD). The purpose of the present study was to investigate gray matter deficits and abnormal resting-state networks in patients with OCD and further investigate the association between the anatomic and functional alterations and clinical symptoms.

Methods

Participants were 33 treatment-naïve OCD patients and 33 matched healthy controls. Voxel-based morphometry was used to investigate the regions with gray matter abnormalities and resting-state functional connectivity analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain.

Results

Compared with healthy controls, patients with OCD showed significantly increased gray matter volume in the left caudate, left thalamus, and posterior cingulate cortex, as well as decreased gray matter volume in the bilateral medial orbitofrontal cortex, left anterior cingulate cortex, and left inferior frontal gyrus. By using the above morphologic deficits areas as seed regions, functional connectivity analysis found abnormal functional integration in the cortical-striatum-thalamic-cortical (CSTC) circuits and default mode network. Subsequent correlation analyses revealed that morphologic deficits in the left thalamus and increased functional connectivity within the CSTC circuits positively correlated with the total Y-BOCS score.

Conclusion

This study provides evidence that morphologic and functional alterations are seen in CSTC circuits and default mode network in treatment-naïve OCD patients. The association between symptom severity and the CSTC circuits suggests that anatomic and functional alterations in CSTC circuits are especially important in the pathophysiology of OCD.  相似文献   

12.
带状疱疹后遗神经痛(postherpetic neuralgia,PHN)是临床上一种慢性顽固性神经病理性疼痛,然而,对于其潜在的中枢机制还知之甚少.为了进一步探讨带状疱疹后遗神经痛患者的相关脑区活动,利用功能核磁共振成像低频振幅振荡(ALFF)技术观察带状疱疹后遗神经痛患者的基础脑区活动.8名带状疱疹后遗神经痛患者与8名性别、年龄相匹配的健康者行静息态功能磁共振(f MRI)成像扫描,用SPM8中的多重回归分析,在控制被试年龄、性别、教育年限的影响下,将每个体素的ALFF值同每个被试的病程、视觉模拟评分(visual analog scale,VAS)进行相关分析.与健康志愿者相比,PHN组与VAS评分相关的ALFF值增高的脑区有:右侧小脑后叶、前额叶背外侧区域(BA11/46/47)、右侧顶叶(BA40)、右侧舌回(BA17/18/19);与VAS评分相关的ALFF值降低的脑区有:右侧颞中回(BA21)、左侧舌回(BA17/18)、右侧小脑前叶、左侧后扣带回(BA30/19)和右侧中央前回(BA3/4/6);PHN组与病程相关的ALFF值增高的脑区有:右侧小脑后叶、前额叶背外侧区域(BA9/10/11/47)、左侧颞上回(BA38)、右侧顶叶和右侧舌回(BA17/18/19);与病程相关ALFF值降低的脑区有:左侧海马旁回(BA28)、右侧小脑前叶、左侧扣带回(BA24)、右侧颞上回(BA13)、左侧中央前回和右侧顶下小叶(BA39/40).研究结果提示,涉及疼痛的情绪、警觉行为、注意的脑区在带状疱疹后遗痛慢性疼痛的产生和维持中发挥重要作用.  相似文献   

13.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.  相似文献   

14.

Background

The formation of compulsive pattern of drug use is related to abnormal regional neural activity and functional reorganization in the heroin addicts’ brain, but the relationship between heroin-use-induced disrupted local neural activity and its functional organization pattern in resting-state is unknown.

Methodology/Principal Findings

With fMRI data acquired during resting state from 17 male heroin dependent individuals (HD) and 15 matched normal controls (NC), we analyzed the changes of amplitude of low frequency fluctuation (ALFF) in brain areas, and its relationship with history of heroin use. Then we investigated the addiction related alteration in functional connectivity of the brain regions with changed ALFF using seed-based correlation analysis. Compared with NC, the ALFF of HD was obviously decreased in the right caudate, right dorsal anterior cingulate cortex (dACC), right superior medial frontal cortex and increased in the bilateral cerebellum, left superior temporal gyrus and left superior occipital gyrus. Of the six regions, only the ALFF value of right caudate had a negative correlation with heroin use. Setting the six regions as “seeds”, we found the functional connectivity between the right caudate and dorsolateral prefrontal cortex (dlPFC) was reduced but that between the right caudate and cerebellum was enhanced. Besides, an abnormal lateral PFC-dACC connection was also observed in HD.

Conclusions

The observations of dysfunction of fronto-striatal and fronto-cerebellar circuit in HD implicate an altered balance between local neuronal assemblies activity and their integrated network organization pattern which may be involved in the process from voluntary to habitual and compulsive drug use.  相似文献   

15.
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.  相似文献   

16.

Background

Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine.

Methodology/Principal Findings

Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM) and 43 gender-matched healthy controls (HC) by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients'' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks.

Conclusions

Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.  相似文献   

17.
Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.  相似文献   

18.
The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.  相似文献   

19.

Background

Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.

Methodology/Principal Findings

For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [11C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.

Conclusions/Significance

These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.  相似文献   

20.
Parkinson’s disease (PD) is a surprisingly heterogeneous disorder with symptoms including resting tremor, bradykinesia and rigidity. PD has been associated with abnormal task related brain activation in sensory and motor regions as well as reward related network. Although corticostriatal skeletomotor circuit dysfunction is implicated in the neurobiology of Parkinson’s disease, the functional connectivity within this circuit at the resting state is still unclear for PD. Here we utilized resting state functional magnetic resonance imaging to measure the functional connectivity of striatum and motor cortex in 19 patients with PD and 20 healthy controls. We found that the putamen, but not the caudate, exhibited enhanced connectivity with supplementary motor area (SMA), using either the putamen or the SMA as the “seed region”. Enhanced SMA-amygdala functional connectivity was also found in the PD group, compared with normal controls. Our findings highlight the key role of hyper-connected putamen-SMC circuit in the pathophysiology of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号