首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p16(INK4a), a tumor suppressor gene that inhibits cyclin-dependent kinase 4 and cyclin-dependent kinase 6, is also implicated in the mechanisms underlying replicative senescence, because its RNA and protein accumulate as cells approach their finite number of population doublings in tissue culture. To further explore the involvement of p16(INK4a) in replicative senescence, we constructed a retroviral vector containing antisense p16(INK4a), pDOR-ASp16, and introduced it into early passages of human diploid fibroblasts. The introduction of this construct significantly suppressed the expression of wild-type p16(INK4a). It also imposed a finite increase in proliferative life span and significant delay of several other cell senescent features, such as cell flattening, cell cycle arrest, and senescence-associated beta-galactosidase positivity. Moreover, telomere shortening and decline in DNA repair capacity, which normally accompany cell senescence, are also postponed by the ASp16 transfection. The life span of fibroblasts was significantly extended, but the onset of replicative senescence could not be totally prevented. Telomerase could not be activated even though telomere shortening was slowed. These observations suggest that the telomere pathway of senescence cannot be bypassed by ASp16 expression. These data not only strongly support a role for p16(INK4a) in replicative senescence but also raise the possibility of using the antisense p16(INK4a) therapeutically.  相似文献   

2.
3.
H2O2 has been the most commonly used inducer for stress-induced premature senescence (SIPS), which shares features of replicative senescence. However, there is still uncertainty whether SIPS and replicative senescence differ or utilize different pathways. 'Young' human diploid fibroblasts (HDFs), treated with prolonged low doses of hydrogen peroxide, led to irreversible cellular senescence. Cells exhibited senescent-morphological features, irreversible G1 cell cycle arrest and irreversible senescence-associated beta-galactosidase positivity. The appearance of these cellular senescence markers was accompanied by significant increases of p21, gadd45 expression and p53 binding activity, as well as a significant decline in DNA repair capability and accelerated telomere shortening. Our results suggest that multiple pathways might be involved in oxidative SIPS, including genes related to DNA-damage-and-repair and telomere shortening, and that SIPS shares the same mechanisms with replicative senescence in vivo. Our findings indicate that several aging theories can be merged together by a common mechanism of oxidative damage, and that the level of oxidative DNA-damage-and-repair capacity may be exploited as reliable markers of cell senescence.  相似文献   

4.
Replicative senescence is a permanent cell cycle arrest in response to extensive telomere shortening. To understand the mechanisms behind a permanent arrest, we screened for factors affecting replicative senescence in budding yeast lacking telomere elongation pathways. Intriguingly, we found that DNA polymerase epsilon (Pol ε) acts synergistically with Exo1 nuclease to maintain replicative senescence. In contrast, the Pol ε-associated checkpoint and replication protein Mrc1 facilitates escape from senescence. To understand this paradox, in which DNA-synthesizing factors cooperate with DNA-degrading factors to maintain arrest, whereas a checkpoint protein opposes arrest, we analyzed the dynamics of double- and single-stranded DNA (ssDNA) at chromosome ends during senescence. We found evidence for cycles of DNA resection, followed by resynthesis. We propose that resection of the shortest telomere, activating a Rad24(Rad17)-dependent checkpoint pathway, alternates in time with an Mrc1-regulated Pol ε resynthesis of a short, double-stranded chromosome end, which in turn activates a Rad9(53BP1)-dependent checkpoint pathway. Therefore, instead of one type of DNA damage, different types (ssDNA and a double-strand break-like structure) alternate in a "vicious circle," each activating a different checkpoint sensor. Every time resection and resynthesis switches, a fresh signal initiates, thus preventing checkpoint adaptation and ensuring the permanent character of senescence.  相似文献   

5.
Cells entering a state of senescence undergo a irreversible cell cycle arrest, associated by a set of functional and morphological changes. Senescence occurs following telomeres shortening (replicative senescence) or exposure to other acute or chronic physiologic stress signals (a phenomenon termed stasis: stress or aberrant signaling-induced senescence). In this review, I discuss the pathways of cellular senescence, the mechanisms involved and the role that these pathways have in regulating the initiation and progression of cancer. Telomere-initiated senescence or loss of telomere function trigger focal recruitement of protein sensors of the DNA double-strand breaks leading to the activation of the DNA damage checkpoint responses and the tumour suppressor gene product, p53, which in turn induces the cell-cycle inhibitor, p21(WAF1). Loss of p53 and pRb function allows continued cell division despite increasing telomere dysfunction and eventually entry into telomere crisis. Immortalisation is an essential prerequisite for the formation of a tumour cell. Therefore, a developing tumour cell must circumvent at least two proliferative barriers--cellular senescence and crisis--to achieve neoplastic transformation. These barriers are regulated by telomere shortening and by the p16(INK4a)/Rb and p53 tumour suppressor pathways. Elucidation of the genes and emerging knowledge about the regulatory mechanisms that lead to senescence and determine the pattern of gene expression in senescent cells may lead to more effective treatments for cancer.  相似文献   

6.
Human diploid fibroblast cells can divide for only a limited number of times in vitro, a phenomenon known as replicative senescence or the Hayflick limit. Variability in doubling potential is observed within a clone of cells, and between two sister cells arising from a single mitotic division. This strongly suggests that the process by which cells become senescent is intrinsically stochastic. Among the various biochemical mechanisms that have been proposed to explain replicative senescence, particular interest has been focussed on the role of telomere reduction. In the absence of telomerase--an enzyme switched off in normal diploid fibro-blasts-cells lose telomeric DNA at each cell division. According to the telomere hypothesis of cell senescence, cells eventually reach a critically short telomere length and cell cycle arrest follows. In support of this concept, forced expression of telomerase in normal fibroblasts appears to prevent cell senescence. Nevertheless, the telomere hypothesis in its basic form has some difficulty in explaining the marked stochastic variations seen in the replicative lifespans of individual cells within a culture, and there is strong empirical and theoretical support for the concept that other kinds of damage may contribute to cellular ageing. We describe a stochastic network model of cell senescence in which a primary role is played by telomere reduction but in which other mechanisms (oxidative stress linked particularly to mitochondrial damage, and nuclear somatic mutations) also contribute. The model gives simulation results that are in good agreement with published data on intra-clonal variability in cell doubling potential and permits an analysis of how the various elements of the stochastic network interact. Such integrative models may aid in developing new experimental approaches aimed at unravelling the intrinsic complexity of the mechanisms contributing to human cell ageing.  相似文献   

7.
BackgroundDespite successful treatment and CD4+ T-cell recovery, HIV-infected individuals often experience a profound immune dysregulation characterized by a persistently low CD4:CD8 T-cell ratio. This residual immune dysregulation is reminiscent of the Immune Risk Phenotype (IRP) previously associated with morbidity and mortality in the uninfected elderly (>85 years). The IRP consists of laboratory markers that include: a low CD4:CD8 T-cell ratio, an expansion of CD8+CD28- T-cells and cytomegalovirus (CMV) seropositivity. Despite the significant overlap in immunological phenotypes between normal aging and HIV infection, the IRP has never been evaluated in HIV-infected individuals. In this pilot study we characterized immune changes associated with the IRP in a sample of successfully treated HIV-infected subjects.Methods18 virologically suppressed HIV-infected subjects were categorized into 2 groups based on their IRP status; HIV+IRP+, (n = 8) and HIV+IRP-, (n = 10) and compared to 15 age-matched HIV uninfected IRP negative controls. All individuals were assessed for functional and phenotypic immune characteristics including: pro-inflammatory cytokine production, antigen-specific proliferation capacity, replicative senescence, T-cell differentiation and lymphocyte telomere length.ResultsCompared to HIV-infected subjects without an IRP, HIV+IRP+ subjects exhibited a higher frequency of TNF-α-producing CD8+ T-cells (p = 0.05) and a reduced proportion of CD8+ naïve T-cells (p = 0.007). The IRP status was also associated with a marked up-regulation of the replicative senescence markers CD57 and KLGR1, on the surface of CD8+T-cells (p = 0.004). Finally, HIV+IRP+ individuals had a significantly shorter mean lymphocyte telomere length than their non-IRP counterparts (p = 0.03).ConclusionsOur findings suggest that, despite similar levels of treatment-mediated viral suppression, the phenotypic and functional immune characteristics of HIV+IRP+ individuals are distinct from those observed in non-IRP individuals. The IRP appears to identify a subset of treated HIV-infected individuals with a higher degree of immune senescence.  相似文献   

8.
9.
Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.  相似文献   

10.
Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced senescence, and 5-aza-2-deoxycytidine-induced senescence in order to profile the pathways controlling various types of senescence. Overall, the pathways common to all 4 types of senescence were related to inflammation and the innate immune system. It was also evident that 5-aza-induced senescence mirrors natural replicative senescence due to telomere shortening. We also examined the prevalence of senescence-associated secretory phenotype (SASP) factors in the RNA-seq data, showing that it is a common characteristic of all 4 types of senescence. In addition, we could discriminate changes in gene expression due to quiescence during cellular senescence from those that were specific to senescence.  相似文献   

11.
A large proportion of the CD8(+) T cell pool in persons chronically infected with HIV consists of cells that show features of replicative senescence, an end stage characterized by irreversible cell cycle arrest, multiple genetic and functional changes, and shortened telomeres. The objective of our research was to determine whether constitutive expression of the gene for the human telomerase (hTERT) can prevent senescence-induced impairments in human virus-specific CD8(+) T cells, particularly in the context of HIV-1 disease. Our results indicate that hTERT-expressing HIV-specific CD8(+) lymphocytes show both an enhanced and sustained capacity to inhibit HIV-1 replication in in vitro coculture experiments, as well as prolonged ability to produce IFN-gamma and TNF-alpha in response to stimulation with HIV-1-derived peptides, as compared with vector-transduced controls. Loss of CD28 expression, the signature change of replicative senescence in cell culture, was retarded in those CD8(+) T cell cultures that had high levels of CD28 at the time of hTERT transduction. These findings suggest that telomere shortening may be the primary driving force behind several aspects of CD8(+) T cell dysfunction associated with replicative senescence. We also demonstrate reduced accumulation of the p16(INK4a) and p21(WAF1) cell cycle inhibitors in hTERT-transduced lymphocytes, providing a possible mechanism by which stable hTERT expression is able to circumvent the senescence barrier in CD8(+) T cells. Given the key role of CD8(+) T cell function in controlling a variety of acute and latent viral infections, approaches to retard the functional decrements associated with replicative senescence may lead to novel types of immunotherapy.  相似文献   

12.
细胞衰老是指细胞生长永久阻滞于细胞周期的G1期,出现形态、生化及表观遗传的变化特性.细胞衰老由端粒缩短、DNA损伤、缺氧或癌基因失调等因素引起,它是抵抗肿瘤发生的主要壁垒.原癌基因c-myc编码转录因子,可调控很多基因,进而影响细胞周期演进、衰老、凋亡、代谢等生物学过程.c-Myc蛋白与细胞衰老密切相关,它可影响hTERT、p16、p53、Bmi-1和p27等衰老相关基因转录.c-Myc不仅可抑制复制性衰老,也能抑制癌基因诱发的衰老.c-Myc抑制ras诱导的细胞衰老取决于CDK2.c-Myc失活不仅能够诱导非恶性细胞(如人成纤维细胞)衰老,而且在许多肿瘤细胞中也可诱导衰老.然而,与ras基因类似,在特定条件下,c-Myc也可诱导细胞衰老,并可促进维氏综合症(Werner syndrome,WRN)缺失细胞的衰老.  相似文献   

13.
14.
Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss‐of‐function genetic screen in primary human fibroblasts. We report that knockdown of the M‐type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress‐induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species–DNA damage–p53‐dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway.  相似文献   

15.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

16.
Cellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but can also be induced prematurely by telomere-independent events such as failure to repair DNA double strand breaks. Here, we review the molecular pathways of senescence onset, focussing on the changes in chromatin organization that are associated with cellular senescence, particularly senescence-associated heterochromatin foci formation. We also discuss the altered dynamics of the DNA double strand break response within the context of aging cells. Appreciating how, mechanistically, cellular senescence is induced, and how changes to chromatin organization and DNA repair contributes to this, is fundamental to our understanding of the normal and premature human aging processes associated with loss of organ and tissue function in humans.  相似文献   

17.
Replicative senescence is induced by critical telomere shortening and limits the proliferation of primary cells to a finite number of divisions. To characterize the activity status of the replicative senescence program in the context of cell cycle activity, we analyzed the senescence phenotypes and signaling pathways in quiescent and growth-stimulated primary human fibroblasts in vitro and liver cells in vivo. This study shows that replicative senescence signaling operates at a low level in cells with shortened telomeres but becomes fully activated when cells are stimulated to enter the cell cycle. This study also shows that the dysfunctional telomeres and nontelomeric DNA lesions in senescent cells do not elicit a DNA damage signal unless the cells are induced to enter the cell cycle by mitogen stimulation. The amplification of senescence signaling and DNA damage responses by mitogen stimulation in cells with shortened telomeres is mediated in part through the MEK/mitogen-activated protein kinase pathway. These findings have implications for the further understanding of replicative senescence and analysis of its role in vivo.  相似文献   

18.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

19.
Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined. We show that senescence in human fibroblasts is associated with focal accumulation of gamma-H2AX and phosphorylation of Chk2, known mediators of the ataxia-telangiectasia mutated regulated signalling pathway activated by DNA double-strand breaks. Both these responses increased in cells grown beyond senescence through inactivation of p53 and pRb, indicating that they are driven by continued cell division and not a consequence of senescence. gamma-H2AX (though not Chk2) was shown to associate directly with telomeric DNA. Furthermore, inactivation of Chk2 in human fibroblasts led to a fall in p21(waf1) expression and an extension of proliferative lifespan, consistent with failure to activate p53. Thus, Chk2 forms an essential component of a common pathway signalling cell cycle arrest in response to both telomere erosion and DNA damage.  相似文献   

20.
Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号