首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections.The metabolically versatile Pseudomonas aeruginosa is an opportunistic pathogen of plants, animals, and humans and is ubiquitously distributed in soil and aquatic habitats. The common reference strain is P. aeruginosa PAO1, a spontaneous chloramphenicol-resistant mutant of the original PAO strain (earlier called “P. aeruginosa strain 1”) that had been isolated in 1954 from a wound in Melbourne, Australia (9, 10). This PAO1 strain from Bruce Holloway''s laboratory has become the reference strain for Pseudomonas genetics and functional analyses of the physiology and metabolism of this gammaproteobacterium. A genetic map of its chromosome was generated by exploiting the mechanisms of gene exchange in bacteria, i.e., transduction and conjugation (11). With the advent of pulsed-field gel electrophoresis (PFGE), a physical map of the PAO1 genome was constructed (32) and later merged with the genetic map information (12). By 2000 the PAO1 strain had been completely sequenced (36). Thereafter, the genome annotation has been continually updated and the database content and functionality have been expanded to facilitate accelerated discovery of P. aeruginosa drug targets and vaccine candidates (38). Two near-saturation libraries of transposon insertion mutants have been constructed in P. aeruginosa PAO1 as a global resource for the scientific community (14, 22).Comparison of the genome sequence with the physical map revealed a large, 2.2-Mb inversion between the sequenced PAO1-UW strain (36) and the original PAO1 strain (9, 10), indicating that PAO1 sublines maintained worldwide in numerous laboratories and strain collections had diversified their genomic sequence. Mutational events were already reported in the 1970s (10), and more recently sequence variations of MexT, which regulates the MexEF-OprN multidrug efflux system, were described (18, 24). Furthermore, a PAO1 subline from a German strain collection (PAO1-D) and another, independent PAO1 subline from a Japanese strain collection (PAO1-J) that had been stored by research groups in Germany and Japan, respectively, were found to be quorum-sensing-negative mutants that carried point mutations in the regulatory gene lasR (6). In addition, spontaneous secretion-defective vfr mutants from a PAO1 population were observed after several cycles of static growth (2). Similarly, we noted a difference in virulence in a mouse infection model (see below) between the MPAO1 and PAO1-DSM sublines that had been utilized for the construction of the transposon library (14) and the physical map (32), respectively. PAO1-DSM was indistinguishable in its SpeI-DpnI-SwaI-PacI physical map from the PAO1 subline that had been stored in the Holloway laboratory (12). Hence, we decided to compare the genomic sequence of the initially sequenced PAO1 subline PAO1-UW (36) with that of MPAO1 and PAO1-DSM. Combined physical mapping and DNA sequencing-by-synthesis revealed numerous single-nucleotide polymorphisms (SNPs) and insertions-deletions (indels) in the chromosomes that were associated with differences in fitness, antimicrobial susceptibility, and virulence of the sublines.  相似文献   

2.
The ability of bacterial cells to sequester cations is well recognized, despite the fact that the specific binding sites and mechanistic details of the process are not well understood. To address these questions, the cation-exchange behavior of Pseudomonas aeruginosa PAO1 cells with a truncated lipopolysaccharide (LPS) (PAO1 wbpL) and cells further modified by growth in a magnesium-deficient medium (PAO1 wbpL − Mg2+) were compared with that of wild-type P. aeruginosa PAO1 cells. P. aeruginosa PAO1 cells had a negative surface charge (zeta potential) between pH 11 and 2.2, due to carboxylate groups present in the B-band LPS. The net charge on PAO1 wbpL cells was increasingly positive below pH 3.5, due to the influence of NH3+ groups in the core LPS. The zeta potentials of these cells were also measured in Na+, Ca2+, and La3+ electrolytes. Cells in the La3+ electrolyte had a positive zeta potential at all pH values tested. Growing P. aeruginosa PAO1 wbpL in magnesium-deficient medium (PAO1 wbpL − Mg2+) resulted in an increase in its zeta potential in the pH range from 3.0 to 6.5. In cation-exchange experiments carried out at neutral pH with either P. aeruginosa PAO1 or PAO1 wbpL, the concentration of bound Ca2+ was found to decrease as the pH was reduced from 7.0 to 3.5. At pH 3.5, the bound Mg2+ concentration decreased sharply, revealing the activity of surface sites for cation exchange and their pH dependence. Infrared spectroscopy of attached biofilms suggested that carboxylate and phosphomonoester functional groups within the core LPS are involved in cation exchange.  相似文献   

3.
Triclosan is a broad-spectrum antimicrobial agent having low toxicity which facilitates its incorporation into numerous personal and health care products. Although triclosan acts against a wide range of gram-positive and gram-negative bacteria by affecting fatty acid biosynthesis, it is ineffective against the opportunistic pathogen Pseudomonas aeruginosa. Wild-type strain P. aeruginosa PAO1 was used as a model system to determine the effects of triclosan on fatty acid metabolism in resistant microorganisms. This was accomplished by cultivating P. aeruginosa PAO1 cultures in the presence of different concentrations of triclosan, monitoring growth rates turbidimetrically, and harvesting in stationary phase. Readily extractable lipids (RELs) were obtained from freeze-dried cells after washing and analyzed using gas chromatography coupled with mass spectrometry. Resultant data demonstrated that triclosan caused dose-dependent increases in the amounts of trans-C16:1 and trans-C18:1 fatty acids, with concomitant decreases in their respective cyclopropyl analogs. Triclosan did not affect the relative concentrations of saturated, cis unsaturated, or the overall ratios of combined C16 to C18 fatty acid species. The readily extractable lipid fractions contained triclosan proportional to triclosan concentrations in the growth media. The presence or absence of triclosan in either liquid or solid media did not affect the antimicrobial susceptibilities of P. aeruginosa PAO1 to a battery of unrelated antimicrobials. Triclosan decreased growth rate in a dose-dependant manner at soluble concentrations. Incorporation of triclosan into the REL fraction was accompanied by increased levels of trans unsaturated fatty acids, decreased levels of cyclopropyl fatty acids, and decrease in growth rate. These alterations may contribute to triclosan resistance in P. aeruginosa PAO1.  相似文献   

4.
Pseudomonas aeruginosa undergoes spontaneous mutation that impairs secretion of several extracellular enzymes during extended cultivation in vitro in rich media, as well as during long-term colonization of the cystic fibrosis lung. A frequent type of strong secretion deficiency is caused by inactivation of the quorum-sensing regulatory gene lasR. Here we analyzed a spontaneously emerging subline of strain PAO1 that exhibited moderate secretion deficiency and partial loss of quorum-sensing control. Using generalized transduction, we mapped the secretion defect to the vfr gene, which is known to control positively the expression of the lasR gene and type II secretion of several proteases. We confirmed this secretion defect by sequencing and complementation of the vfr mutation. In a reconstruction experiment conducted with a 1:1 mixture of wild-type strain PAO1 and a vfr mutant of PAO1, we observed that the vfr mutant had a selective advantage over the wild type after growth in static culture for 4 days. Under these conditions, spontaneous vfr emerged in a strain PAO1 population after four growth cycles, and these mutants accounted for more than 40% of the population after seven cycles. These results suggest that partial or complete loss of quorum sensing and secretion can be beneficial to P. aeruginosa under certain environmental conditions.  相似文献   

5.
It has been widely reported that quorum-sensing incapable strains of Pseudomonas aeruginosa are less virulent than wild type strains. However, quorum sensing mutants of P. aeruginosa have been shown to develop other spontaneous mutations under prolonged culture conditions, and one of the phenotypes of P. aeruginosa that is frequently affected by this phenomenon is type IV pili-dependent motility, referred to as twitching motility. As twitching motility has been reported to be important for adhesion and colonisation, we aimed to generate a quorum-sensing knockout for which the heritage was recorded and the virulence factor production in areas unrelated to quorum sensing was known to be intact. We created a lasIRrhlIR quadruple knockout in PAO1 using a published technique that allows for the deletion of antibiotic resistance cartridges following mutagenesis, to create an unmarked QS knockout of PAO1, thereby avoiding the need for use of antibiotics in culturing, which can have subtle effects on bacterial phenotype. We phenotyped this mutant demonstrating that it produced reduced levels of protease and elastase, barely detectable levels of pyoverdin and undetectable levels of the quorum sensing signal molecules N-3-oxododecanoly-L-homoserine lactone and N-butyryl homoserine lactone, but retained full twitching motility. We then used a mouse model of acute lung infection with P. aeruginosa to demonstrate that the lasIRrhlIR knockout strain showed equal persistence to wild type parental PAO1, induced equal or greater neutrophil infiltration to the lungs, and induced similar levels of expression of inflammatory cytokines in the lungs and similar antibody responses, both in terms of magnitude and isotype. Our results suggest, in contrast to previous reports, that lack of quorum sensing alone does not significantly affect the immunogenicity, infectiveness and persistence of P. aeruginosa in a mouse model of acute lung infection.  相似文献   

6.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other γ-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   

7.
We recently demonstrated that Pseudomonas aeruginosa PAO1 undergoes a pronounced phenotypic change when introduced into the intestines of rats during surgical injury. Recovered strains displayed a specific phenotype (termed the P2 phenotype) characterized by altered pyocyanin production, high collagenase activity, high swarming motility, low resistance to chloramphenicol, and increased killing of Caenorhabditis elegans compared to the inoculating strain (termed the P1 phenotype). The aims of this study were to characterize the differences between the P. aeruginosa P1 and P2 phenotypes in quorum sensing and competitiveness. We then determined the presence of the P2 phenotype among PAO1 strains from various laboratories. Results demonstrated that P2 cells display accelerated growth during early exponential phase and early activation of quorum-sensing systems and overcome the growth of P1 cells in a mixed population. Among eight PAO1 strains obtained from different laboratories, four exhibited the P2 phenotype. Of 27 mutants analyzed from the P. aeruginosa MPAO1 transposon library, 25 displayed P2 phenotypes. The P2 phenotype in both cases correlated with a lack of expression of mexE or mexF due to mutations in mexT and mexF genes. In summary, strains possessing the P2 phenotype are distributed among PAO1 strains commonly used across a variety of research laboratories. Genetically, they are characterized by various mutations in mexT or mexF.  相似文献   

8.
To investigate the role of superoxide dismutase (SOD) in virulence against the silkworm, Bombyx mori, mutants of Pseudomonas aeruginosa PAO1 lacking manganese-SOD (PAO1sodM), iron-SOD (PAO1sodB), or both (PAO1sodMB) were generated. The mutants were injected into the hemocoel of B. mori. The virulence decreased in the order PAO1 = PAO1sodM > PAO1sodB > PAO1sodMB. In particular, PAO1sodMB was avirulent at a dose of 105 cells or less. The sod double mutant PAO1sodMB was then complemented with either pSodM or pSodB in trans. In both the complemented strains, the virulence was partially restored. Of the two plasmids, pSodB contributed more to the virulence of P. aeruginosa against B. mori. The results of growth in B. mori hemolymph broth and microscopic analysis suggested that a longer lag phase and superoxide sensitivity correlated with decreased virulence in sod mutants. In conclusion, the SODs are required for full virulence of P. aeruginosa against B. mori and Fe-SOD is more important than Mn-SOD in the infection process.  相似文献   

9.
The genomic sequence of Pseudomonas aeruginosa PAO1 was searched for the presence of open reading frames (ORFs) encoding enzymes potentially involved in the formation of Gln-tRNA and of Asn-tRNA. We found ORFs similar to known glutamyl-tRNA synthetases (GluRS), glutaminyl-tRNA synthetases (GlnRS), aspartyl-tRNA synthetases (AspRS), and trimeric tRNA-dependent amidotransferases (AdT) but none similar to known asparaginyl-tRNA synthetases (AsnRS). The absence of AsnRS was confirmed by biochemical tests with crude and fractionated extracts of P. aeruginosa PAO1, with the homologous tRNA as the substrate. The characterization of GluRS, AspRS, and AdT overproduced from their cloned genes in P. aeruginosa and purified to homogeneity revealed that GluRS is discriminating in the sense that it does not glutamylate tRNAGln, that AspRS is nondiscriminating, and that its Asp-tRNAAsn product is transamidated by AdT. On the other hand, tRNAGln is directly glutaminylated by GlnRS. These results show that P. aeruginosa PAO1 is the first organism known to synthesize Asn-tRNA via the indirect pathway and to synthesize Gln-tRNA via the direct pathway. The essential role of AdT in the formation of Asn-tRNA in P. aeruginosa and the absence of a similar activity in the cytoplasm of eukaryotic cells identifies AdT as a potential target for antibiotics to be designed against this human pathogen. Such novel antibiotics could be active against other multidrug-resistant gram-negative pathogens such as Burkholderia and Neisseria as well as all pathogenic gram-positive bacteria.  相似文献   

10.
Gram negative bacteria have lipopolysaccharides (LPS) that are critical for their survival. LPS molecules are composed of antigenic exopolysaccharide chains (O antigens). We are interested in discovering the enzymes involved in the biosynthesis of O antigens in Pseudomonas aeruginosa. The common polysaccharide antigen contains α-linked d-rhamnose residues. We have now synthesized GDP-d-rhamnose by a convenient synthesis in aqueous solution, and have shown that it can be used without extensive purification as the donor substrate for d-rhamnosyltransferase (WbpZ) from the P. aeruginosa strain PAO1. The availability of this nucleotide sugar preparation allows for characterization of d-rhamnosyltransferases.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in the lungs of individuals with cystic fibrosis. It is intrinsically resistant to many antibiotics, and resistance is emerging rapidly to those drugs that currently remain efficacious. Therefore, there is a pressing need to identify new anti-pseudomonal drug targets. To this end, we have characterized the P. aeruginosa indole-3-glycerol phosphate synthase (PaIGPS). PaIGPS catalyzes the fifth reaction in the synthesis of tryptophan from chorismate??a reaction that is absent in mammals. PaIGPS was expressed heterologously in Escherichia coli, and purified with high yields. The purified enzyme is active over a broad pH range and has the highest turnover number of any characterized IGPS (k cat?=?11.1?±?0.1?s?1). These properties are likely to make PaIGPS useful in coupled assays for other enzymes in tryptophan biosynthesis. We have also shown that deleting the gene for PaIGPS reduces the fitness of P. aeruginosa strain PAO1 in synthetic cystic fibrosis sputum (relative fitness, W?=?0.89?±?0.02, P?=?0.001). This suggests that de novo tryptophan biosynthesis may play a role in the establishment and maintenance of P. aeruginosa infections, and therefore that PaIGPS is a potential target for the development of new anti-pseudomonal drugs.  相似文献   

12.
Pseudomonas aeruginosa PAO1 is repelled by trichloroethylene (TCE), and the methyl-accepting chemotaxis proteins PctA, PctB, and PctC serve as the major chemoreceptors for negative chemotaxis to TCE. In this study, we found that the pctABC triple mutant of P. aeruginosa PAO1 was attracted by TCE. Chemotaxis assays of a set of mutants containing deletions in 26 potential mcp genes revealed that mcpA (PA0180) is the chemoreceptor for positive chemotaxis to TCE. McpA also detects tetrachloroethylene and dichloroethylene isomers as attractants.  相似文献   

13.
14.
Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements.  相似文献   

15.
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 (Acer palmatum), K9 (Acer pseudosieboldianum) and K13 (Cercis chinensis) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.  相似文献   

16.
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions.  相似文献   

17.

Background

Bacteria are well known to form dormant persister cells that are tolerant to most antibiotics. Such intrinsic tolerance also facilitates the development of multidrug resistance through acquired mechanisms. Thus persister cells are a promising target for developing more effective methods to control chronic infections and help prevent the development of multidrug-resistant bacteria. However, control of persister cells is still an unmet challenge.

Methodology/Principal Findings

We show in this report that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can restore the antibiotic susceptibility of Pseudomonas aeruginosa PAO1 persister cells at growth non-inhibitory concentrations. Persister control by BF8 was found to be effective against both planktonic and biofilm cells of P. aeruginosa PAO1. Interestingly, although BF8 is an inhibitor of quorum sensing (QS) in Gram-negative bacteria, the data in this study suggest that the activities of BF8 to revert antibiotic tolerance of P. aeruginosa PAO1 persister cells is not through QS inhibition and may involve other targets.

Conclusion

BF8 can sensitize P. aeruginosa persister cells to antibiotics.  相似文献   

18.
The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation between amidase and urease formation was observed. The results suggest that amidase formation in strain PAO is subject to nitrogen control and that glutamine or some compound derived from it mediates the nitrogen repression of amidase.  相似文献   

19.
In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required and up-regulated during swarming motility, which is triggered by high cell densities. As high density bacterial populations also display elevated antibiotics resistance, studies have demonstrated swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study was to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduces PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a twofold to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.  相似文献   

20.

Background

Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors.

Methods and Results

Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract.

Conclusions

This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced sensitivity of its biofilm towards tobramycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号