首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental change has reshuffled communities often causing taxonomic homogenization rather than differentiation. Some studies suggest that this increasing similarity of species composition between communities is accompanied by an increase in similarity of trait composition—functional homogenization—although different methodologies have failed to come to any consistent conclusions. Functional homogenization could have a large effect on ecosystem functioning and stability. Here, we use the general definition of homogenization as “reduced spatial turnover over time” to compare changes in Simpson's beta diversity (taxonomic turnover) with changes in Rao's quadratic entropy beta diversity (functional turnover) in British breeding birds at three spatial scales. Using biotic and climatic variables, we identify which factors may predispose a site to homogenization. The change in turnover measures between two time periods, 20 years apart, was calculated. A null model approach was taken to identify occurrences of functional homogenization and differentiation independent of changes in taxonomic turnover. We used conditional autoregressive models fitted using integrated nested Laplace approximations to determine how environmental drivers and factors relating to species distributions affect changes in spatial turnover of species and functional diversity. The measurement of functional homogenization affects the chance of rejection of the null models, with many sites showing taxonomic homogenization unaccompanied by functional homogenization, although occurrence varies with spatial scale. At the smallest scale, while temperature‐related variables drive changes in taxonomic turnover, changes in functional turnover are associated with variation in growing degree days; however, changes in functional turnover become more difficult to predict at larger spatial scales. Our results highlight the multifactorial processes underlying taxonomic and functional homogenization and that redundancy in species traits may allow ecosystem functioning to be maintained in some areas despite changes in species composition.  相似文献   

2.
Among the major changes induced by human beings, biotic homogenization is gaining popularity at regional as well as global level. Biotic homogenization is a multifaceted process which results from species extinction, introduction and environmental modification often induced by human beings. This human mediated introduction of alien species and the extirpation of native species, either independently or in combine have caused loss of taxonomic regional distinctiveness among formerly disparate faunas and floras. Ample evidence reveals that extent of homogenization differed between various ecosystems and taxa, as well as in different regions. Although biotic homogenization leads to increase in species richness at local level but causes loss of diversity at global level (i.e., paradox of gaining species but loosing diversity). Potentially biotic homogenization could affect any of the many processes in communities that vary in space and time, such as spatial subsidies and food-web dynamics, and thereby have cascading effects elsewhere on the landscape. Biotic homogenization does have relevance to conservation as it has utility in reserve selection and management. Current knowledge pertaining to patterns, mechanisms and implications of biotic homogenization is highly variable across taxonomic groups, but in general is incomplete. This article is an attempt to review literature pertaining to patterns, mechanisms and implications of biotic homogenization.  相似文献   

3.
Biotic homogenization: a new research agenda for conservation biogeography   总被引:10,自引:0,他引:10  
Aim Biotic homogenization describes the process by which species invasions and extinctions increase the genetic, taxonomic or functional similarity of two or more biotas over a specified time interval. The study of biotic homogenization is a young and rapidly emerging research area in the budding field of conservation biogeography, and this paper aims to synthesize our current knowledge of this process and advocate a more systematic approach to its investigation. Methods Based on a comprehensive examination of the primary literature this paper reviews the process of biotic homogenization, including its definition, quantification, underlying ecological mechanisms, environmental drivers, the empirical evidence for different taxonomic groups, and the potential ecological and evolutionary implications. Important gaps in our knowledge are then identified, and areas of new research that show the greatest promise for advancing our current thinking on biotic homogenization are highlighted. Results Current knowledge of the patterns, mechanisms and implications of biotic homogenization is highly variable across taxonomic groups, but in general is incomplete. Quantitative estimates are almost exclusively limited to freshwater fishes and plants in the United States, and the principal mechanisms and drivers of homogenization remain elusive. To date research has focused on taxonomic homogenization, and genetic and functional homogenization has received inadequate attention. Trends over the past decade, however, suggest that biotic homogenization is emerging as a topic of greater research interest. Main conclusions My investigation revealed a number of important knowledge gaps and priority research needs in the science of biotic homogenization. Future studies should examine the homogenization process for different community properties (species occurrence and abundance) at multiple spatial and temporal scales, with careful attention paid to the various biological mechanisms (invasions vs. extinctions) and environmental drivers (environmental alteration vs. biotic interactions) involved. Perhaps most importantly, this research should recognize that there are multiple possible outcomes resulting from the accumulation of species invasions and extinctions, including biotic differentiation whereby genetic, taxonomic or functional similarity of biotas decreases over time.  相似文献   

4.
Aim The highly endemic fishes of the arid Southwest USA have been heavily impacted by human activities resulting in one of the most threatened fish faunas in the world. The aim of this study was to examine the patterns and drivers of taxonomic and functional beta diversity of freshwater fish in the Lower Colorado River Basin across the 20th century. Location Lower Colorado River Basin (LCRB). Methods The taxonomic and functional similarities of watersheds were quantified to identify patterns of biotic homogenization or differentiation over the period 1900–1999. Path analysis was used to identify the relative influence of dam density, urban land use, precipitation regimes and non‐native species richness on observed changes in fish faunal composition. Results The fish fauna of the LCRB has become increasingly homogenized, both taxonomically (1.1% based on βsim index) and functionally (6.2% based on Bray–Curtis index), over the 20th century. The rate of homogenization varied substantially; range declines of native species initially caused taxonomic differentiation (?7.9% in the 1960s), followed by marginal homogenization (observed in the 1990s) in response to an influx of non‐native species introductions. By contrast, functional homogenization of the basin was evident considerably earlier (in the 1950s) because of the widespread introduction of non‐native species sharing similar suites of biological traits. Path analysis revealed that both taxonomic and functional homogenization were positively related to the direct and indirect (facilitation by dams and urbanization) effects of non‐native species richness. Main conclusions Our study simultaneously examines rates of change in multiple dimensions of the homogenization process. For the endemic fish fauna of the LCRB, we found that the processes of taxonomic and functional homogenization are highly dynamic over time, varying both in terms of the magnitude and rate of change over the 20th century.  相似文献   

5.
Aim Species introductions and extinctions have reorganized the earth's biota, often leaving formerly spatially distinct assemblages more similar in species composition, a process termed biotic homogenization. The study of biotic homogenization has been almost entirely focused on the change in taxonomic similarity between assemblages through time. Here, we provide a trait‐based method for calculating functional similarity through time and compare these trends in functional attributes with those trends generated from a taxonomic perspective. Location Data were produced through computer simulation and gathered from North American Breeding Bird Survey (BBS) data and published accounts of North American birds for 10 locations across the east and west coast of the United States. Methods We simulated change in assemblages with different trait types (binary and continuous), levels of trait overlap, number of traits and species richness to determine the relationship between change in taxonomic similarity (ΔTS) and change in functional similarity (ΔFS). We also assess the relationship between ΔTS and ΔFS for bird assemblages across 10 locales in the USA between 1968 and 2008. We used simple linear regression to determine the slope and correlation between ΔTS and ΔFS and used multiple regression to assess the influence of trait overlap, number of traits, species richness and the ratio of traits to species on the relationship between ΔTS and ΔFS. Results Simulations reveal that trait redundancy governs the relationship between ΔTS and ΔFS. A decrease in trait overlap increases the slope of the regression between ΔTS and ΔFS and an increase in the ratio of traits to species in the regional pool increases the correlation. The relationship between ΔTS and ΔFS for breeding birds is comparable to simulations with low trait redundancy. Main conclusions We show that often losing or gaining species from an assemblage tells us very little about the loss or gain of function, and that this scenario most often occurs when the two assemblages have high trait redundancy. It remains to be seen how prevalent this scenario is within empirical examples; however, the implications for the continued delivery of ecosystem functions in the face of species introductions and extinctions are large.  相似文献   

6.
In recent years, there has been growing concern about how species invasions and extinctions could change the distinctiveness of formerly disparate fauna and flora, a process called biotic homogenization. In the present study, a null model of biotic of homogenization was developed and applied to the European freshwater fish fauna. We found that non-native fish species led to the greatest homogenization in south-western Europe and greatest differentiation in north-eastern Europe. Comparing these observed patterns to those expected by our null model empirically demonstrated that biotic homogenization is a non-random ecological pattern, providing evidence for previous assumptions. The place of origin of non-native species was also considered by distinguishing between exotic (originating from outside Europe) and translocated species (originating from within Europe). We showed that exotic and translocated species generated distinct geographical patterns of biotic homogenization across Europe because of their contrasting effects on the changes in community similarity among river basins. Translocated species promoted homogenization among basins, whereas exotic species tended to decrease their compositional similarity. Quantifying the individual effect of exotic and translocated species is therefore an absolute prerequisite to accurately assess the spatial dynamics of biotic homogenization.  相似文献   

7.
It is widely documented that human activities have elevated the extirpation of natural populations as well as the successful introduction to new areas of non-native species. These dual processes of introduction and extirpation can change the similarity of communities, but the direction and magnitude these changes take are likely to depend on the manner in which introductions and extirpations occur, the spatial scale at which the changes are measured, and the initial similarity of the communities before the human-induced drivers occurred. Here, we explore patterns of extirpation and introduction and their influence on the similarity of global oceanic island bird assemblages from four different Oceans (Atlantic, Caribbean, Indian, Pacific). We show that different historical patterns of introduction and extirpation have produced varying trends in compositional similarity both between islands within archipelagos and between islands across different archipelagos within the same ocean. Patterns of bird assemblage convergence (i.e. taxonomic homogenization) or divergence (i.e. taxonomic differentiation) among islands depended on the scale of examination, the evolutionary associations among species of the region, and the cultural history of human colonization. These factors are all likely to be leading to a series of multiple interacting processes that are shaping the complex compositional changes observed among global island bird faunas over time.  相似文献   

8.
Aim To assess how changing taxonomy and distribution data affect estimates of faunal homogenization and differentiation as agents of global change in freshwater fishes. Location Provinces and territories of Canada. Methods Species presence–absence data were collated in 2000 and 2005 from regional and national lists, and faunal homogenization and differentiation were calculated using Jaccard’s faunal similarity index. Differences between time periods and areas were summarized using principal coordinate analysis. Differences in faunal assemblages between native and total faunas were assessed via Whittaker’s (1960) beta diversity (βw) index and tests of differences in multivariate dispersion of fish species compositions. Results Among aquatic ecoregions in one province (British Columbia) there were four taxonomic changes and 18 distributional changes between the 2000 and 2005 databases. Pairwise Jaccard’s faunal similarity index between the eight aquatic ecoregions declined by an average of 4.8% from 35.9% in native faunas to 31.1% in total faunas (introductions – extinctions/extirpations) indicating overall faunal differentiation. Average pairwise similarity declined by 0.9% between 2000 and 2005. Across thirteen provinces and territories of Canada, there were five taxonomic changes and 61 distributional changes between the 2000 and 2005 databases. Generally, faunal homogenization increased; pairwise Jaccard’s increased by an average of 1.8% from 27.1% in native faunas to 28.9% in total faunas or an average of 0.6% per comparison. Main conclusions Despite changing taxonomy and fish distribution information, comparative analysis of 2000 and 2005 databases consistently show overall faunal differentiation at the smallest (provincial) spatial scale and homogenization at the largest scale (across Canada) and that these trends continued between time periods. Homogenization and differentiation followed expectations from conceptual models based on the relative prevalence of species invasions and extinctions within communities. General conclusions of the onset and extent of homogenization and differentiation were relatively insensitive to our changing understanding of taxonomy and distribution.  相似文献   

9.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   

10.
Studies of biotic homogenization have focused primarily on characterizing changes that have occurred between some past baseline and the present day. In order to understand how homogenization may change in the future, it is important to contextualize the processes driving these changes. Here, we examine empirical patterns of change in taxonomic similarity among oceanic island plant and bird assemblages. We use these empirical cases to unpack dynamic properties of biotic homogenization, thereby elucidating two important factors that have received little attention: 1) initial similarity and 2) the influence of six classes of introduction and extinction events. We use Jaccard's Index to explore the interplay among these factors in determining the changes in similarity that have occurred between human settlement and the present. Specifically, we develop general formulas for changes in similarity resulting from each of the six types of introductions and extinctions, so that the effect of each event type is formulated in terms of initial similarity and species richness. We then apply these insights to project how similarity levels would change in the future if the present patterns of introductions and extinctions continue. We show that the six event types, along with initial similarity, can show dramatically different behavior in different systems, leading to widely variable influences on similarity. Plant and bird biotas have homogenized only slightly to date, but their trajectories of change are highly divergent. Although existing patterns of colonization and extinction might not continue unchanged, if they were to do so then plant assemblages would show little additional change, whereas bird assemblages would become much more strongly homogenized. Our results suggest that moderate changes in similarity observed to date mask the potential for more dramatic changes in the future, and that the interaction among initial similarity and differential introduction and extinction regimes drives these dynamics.  相似文献   

11.
Biotic homogenization reduces the regional distinctiveness of biotas with significant ecological and evolutionary consequences. The outcome of this process may depend on the spatial scale of inquiry (both resolution and extent), the selected taxon and dissimilarity index as well as on the contribution of species extinctions and introductions. In the present research, we try to disentangle the effects of these factors on homogenization patterns comparing six taxonomic groups (pteridophytes, spermatophytes, breeding birds, mammals, reptiles and non-marine molluscs) within and between five Atlantic archipelagos of the Macaronesian Region. Taxonomic homogenization was analyzed by partitioning β-diversity into spatial turnover of species composition and nestedness. Total compositional change was divided into changes related to extinctions/extirpations of native and to introductions of alien species. Analyses were carried out at two different spatial resolutions (island versus archipelago unit) and geographic extents (within each archipelago and across the whole Macaronesian Region). Pteridophytes and reptiles tended to taxonomic differentiation, while mammals and molluscs showed homogenization regardless of scale and resolution. For spermatophytes, the most species-rich group, taxonomic heterogenization traded off with homogenization from the local to regional extent. Birds revealed heterogenization at the island, but not at the archipelago resolution. Extirpations of native species generally led to homogenization at the local extent, whereas the effect of alien introductions varied according to taxon and spatial scale. Furthermore, overall changes in species pool similarities were driven both by spatial turnover and nestedness. We demonstrate that biotic homogenization after human colonization within Macaronesia clearly depended on taxon, spatial scale and the dissimilarity measure. We suggest that homogenization of island biotas is first conditioned by initial dissimilarity related to taxon characteristics, such as dispersal capacity or endemicity, evolutionary processes, archipelago configurations and environmental variation along spatial scales. Thus, similarity change is the outcome of the impacts of number, proportion and distribution type of lost and gained species. Rare extirpated and common introduced species homogenize, while common extirpated and rare introduced species differentiate island biotas. Partitioning of beta diversity helps to improve our understanding of the homogenization process.  相似文献   

12.
Aim We assess changes in plant species richness and changes in species dissimilarity at local scale in Swiss grassland between the time periods 2001–2004 and 2006–2009. Further, we provide an ecological interpretation of the observed taxonomic homogenization of vascular plants. Location Switzerland. Methods Changes in species richness and changes in Simpson dissimilarity index of vascular plants in grassland (meadows and pastures) were examined. The analyses were based on species lists recorded on 339 10‐m2 sample plots from a systematic sample covering the entire Switzerland. Each sample plot had been surveyed once in 2001–2004 and once in 2006–2009 with 5 years between the first and the second survey. Changes in species dissimilarity were interpreted by comparing the relative contribution of several indicator species groups. Results Mean species richness of vascular plants in grassland increased during the study period. In contrast, species dissimilarity of plants decreased, suggesting local‐scale floristic homogenization of grassland in Switzerland. It was mostly because of the spread of common species, namely the species that are tolerant to high nutrient levels, the species of low conservation value and the species adapted to moderate temperature levels that led to taxonomic homogenization. Target species for conservation did only marginally affect taxonomic homogenization. In contrast to the predictions from studies of taxonomic homogenization on larger scales, the taxonomic homogenization of grassland at local scale was not explained by the spread of neophytic species. Main conclusions The biotic diversity of grassland in Switzerland changed considerably between 2001–2004 and 2006–2009. The observed taxonomic homogenization was merely because of the spread of common species. Local‐scale changes in land use regimes implemented by agri‐environmental schemes and other conservation efforts on parts of the entire grassland area were, apparently, not enough to prevent the total grassland from recent taxonomic homogenization.  相似文献   

13.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

14.
Changes in the diversity structure of avian assemblages in North America   总被引:2,自引:0,他引:2  
Aim To determine the major patterns of change in avian diversity structure over space and time at a local resolution and continental extent in non‐urban areas in North America. Location The contiguous United States and southern Canada. Methods We used 1673 North American Breeding Bird Survey (BBS) routes containing 547 terrestrial and aquatic species to estimate four diversity components: species richness, individual abundance, taxonomic distinctness and species evenness. We implemented three levels of analysis to examine changes in diversity structure on a yearly basis from 1968 to 2003: (1) a canonical analysis of discriminance, (2) a univariate analysis across BBS routes, and (3) a univariate analysis at individual BBS routes. We estimated changes in similarity in species composition over time between 470,730 BBS route pairs. We also estimated the level of human activity at BBS routes using three spatial anthropogenic databases. Results BBS routes were located in non‐urban areas in association with low nighttime light activity and moderately low human population densities. The analysis of diversity structure indicated the presence of two independent patterns: (1) a temporally consistent pattern defined by increasing species richness (12% increase from 1968 to 2003) associated with limited gains in taxonomic distinctness, and (2) an association between species abundance and evenness related to variability in abundance associated with the most abundant species. The similarity analysis indicated that BBS routes located closer to the Atlantic and the Pacific coasts of the United States experienced the strongest patterns of homogenization of species composition. Main conclusions Our results suggest that avian diversity structure has changed at the local scale in non‐urban areas in North America. However, there was no evidence for a consistent continent‐wide pattern. Instead, the evidence pointed to the presence of regional factors influencing diversity patterns. This study provides a foundation for more detailed investigations of the spatiotemporal and taxonomic details of these general patterns.  相似文献   

15.
The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.  相似文献   

16.
Aim To investigate taxonomic homogenization and/or differentiation of insect and vascular plant assemblages across the Southern Ocean Islands (SOI), and how they differ with changing spatial extent and taxonomic resolution. Location Twenty‐two islands located across the Southern Ocean, further subdivided into five island biogeographical provinces. These islands are used because comprehensive data on both indigenous and non‐indigenous insect and plant species are available. Methods An existing database was updated, using newly published species records, identifying the indigenous and non‐indigenous insect and vascular plant species recorded for each island. Homogenization and differentiation were measured using Jaccard’s index (JI) of similarity for assemblages across all islands on a pairwise basis, and for island pairs within each of the biogeographical provinces. The effects of taxonomic resolution (species, genus, family) and distance on levels of homogenization or differentiation were examined. To explore further the patterns of similarity among islands for each of the taxa and groupings (indigenous and non‐indigenous), islands were clustered based on JI similarity matrices and using group averaging. Results Across the SOI, insect assemblages have become homogenized (0.7% increase in similarity at species level) while plant assemblages have become differentiated at genus and species levels. Homogenization was recorded only when pairwise distances among islands exceeded 3000 km for insect assemblages, but distances had to exceed 10,000 km for plant assemblages. Widely distributed non‐indigenous plant species tend to have wider distributions across the SOI than do their insect counterparts, and this is also true of the indigenous species. Main conclusions Insect assemblages across the SOI have become homogenized as a consequence of the establishment of non‐indigenous species, while plant assemblages have become more differentiated. The likely reason is that indigenous plant assemblages are more similar across the SOI than are insect assemblages, which show greater regionalization. Thus, although a suite of widespread, typically European, weedy, non‐indigenous plant species has established on many islands, the outcome has largely been differentiation. Because further introductions of insects and vascular plants are probable as climates warm across the region, the patterns documented here are likely to change through time.  相似文献   

17.
Toward a mechanistic understanding and prediction of biotic homogenization   总被引:1,自引:0,他引:1  
The widespread replacement of native species with cosmopolitan, nonnative species is homogenizing the global fauna and flora. While the empirical study of biotic homogenization is substantial and growing, theoretical aspects have yet to be explored. Consequently, the breadth of possible ecological mechanisms that can shape current and future patterns and rates of homogenization remain largely unknown. Here, we develop a conceptual model that describes 14 potential scenarios by which species invasions and/or extinctions can lead to various trajectories of biotic homogenization (increased community similarity) or differentiation (decreased community similarity); we then use a simulation approach to explore the model's predictions. We found changes in community similarity to vary with the type and number of nonnative and native species, the historical degree of similarity among the communities, and, to a lesser degree, the richness of the recipient communities. Homogenization is greatest when similar species invade communities, causing either no extinction or differential extinction of native species. The model predictions are consistent with current empirical data for fish, bird, and plant communities and therefore may represent the dominant mechanisms of contemporary homogenization. We present a unifying model illustrating how the balance between invading and extinct species dictates the outcome of biotic homogenization. We conclude by discussing a number of critical but largely unrecognized issues that bear on the empirical study of biotic homogenization, including the importance of spatial scale, temporal scale, and data resolution. We argue that the study of biotic homogenization needs to be placed in a more mechanistic and predictive framework in order for studies to provide adequate guidance in conservation efforts to maintain regional distinctness of the global biota.  相似文献   

18.
Extensive distribution of widespread species and the loss of native species driven by anthropogenic disturbances modify community similarity, resulting in a decrease or increase in community distinctiveness. Data from four basins in the Wannan Mountains, China, were used to evaluate the effects of low‐head dams on patterns of fish faunal homogenization and differentiation based on abundance data. We aimed to examine the spatial changes in taxonomic and functional similarities of fish assemblages driven by low‐head dams and to examine whether the changes in the similarity of fish assemblages differed between taxonomic and functional components. We found that low‐head dams significantly decreased the mean taxonomic similarity but increased the mean functional similarity of fish assemblages in impoundments using abundance‐based approaches, suggesting that taxonomic differentiation accompanied functional homogenization in stream fish assemblages. These results show the importance of population abundance in structuring fish faunal homogenization and differentiation at small scales, especially when the major differences among assemblages are in species abundance ranks rather than species identities. Additionally, we also found only a weak positive correlation between changes in mean taxonomic and functional similarities, and partial pairs exhibited considerable variation in patterns of fish faunal homogenization and differentiation for taxonomic and functional components. In conclusion, this study highlighted that the observed taxonomic differentiation of current fish assemblages (short‐term phenomenon) is probably an early warning sign of further homogenization in regions where native species are completely predominated and that changes in taxonomic similarity cannot be used to predict changes in functional similarity.  相似文献   

19.
Biotic interactions are known to affect the composition of species assemblages via several mechanisms, such as competition and facilitation. However, most spatial models of species richness do not explicitly consider inter‐specific interactions. Here, we test whether incorporating biotic interactions into high‐resolution models alters predictions of species richness as hypothesised. We included key biotic variables (cover of three dominant arctic‐alpine plant species) into two methodologically divergent species richness modelling frameworks – stacked species distribution models (SSDM) and macroecological models (MEM) – for three ecologically and evolutionary distinct taxonomic groups (vascular plants, bryophytes and lichens). Predictions from models including biotic interactions were compared to the predictions of models based on climatic and abiotic data only. Including plant–plant interactions consistently and significantly lowered bias in species richness predictions and increased predictive power for independent evaluation data when compared to the conventional climatic and abiotic data based models. Improvements in predictions were constant irrespective of the modelling framework or taxonomic group used. The global biodiversity crisis necessitates accurate predictions of how changes in biotic and abiotic conditions will potentially affect species richness patterns. Here, we demonstrate that models of the spatial distribution of species richness can be improved by incorporating biotic interactions, and thus that these key predictor factors must be accounted for in biodiversity forecasts.  相似文献   

20.
Rivers and streams are among the most threatened ecosystems worldwide, and their fish assemblages have been modified by anthropogenic habitat alteration and introductions of non‐native species. Consequently, two frequently observed patterns of assemblage change over time are species loss and biotic homogenization. In the present study, we compared contemporary (2006–2007) and historical (1948–1955) assemblages of darters, a group of small benthic fishes of the family Percidae, in the Arkansas River drainage of northeastern Oklahoma, USA. Results showed species loss between the two sampling periods, with historical estimates of overall species diversity across the study area exceeding contemporary estimates by five to eight species. Assemblages showed a low degree of darter similarity based on species presence and absence, with pairwise site comparisons (Jaccard's similarity index) between historical and contemporary samples averaging < 0.35. No significant homogenization or differentiation of assemblages occurred. Range expansion of widespread species, one of the primary mechanisms of biotic homogenization, was not observed; rather, all species occurred at a smaller proportion of sites in contemporary samples. Our results highlight the threat posed by anthropogenic habitat alteration to taxonomic groups such as darters, most of which are habitat specialists. However, our results suggest that biotic homogenization is unlikely to occur in the absence of immigration, especially if assemblages are subjected to ‘novel disturbances’ such as dam construction and watershed‐scale habitat degradation which negatively affect all components of the assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号