首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pentatricopeptide repeat (PPR) proteins belong to a family of approximately 450 members in Arabidopsis, of which few have been characterized. We identified loss of function alleles of SLO2, defective in a PPR protein belonging to the E+ subclass of the P-L-S subfamily. slo2 mutants are characterized by retarded leaf emergence, restricted root growth, and late flowering. This phenotype is enhanced in the absence of sucrose, suggesting a defect in energy metabolism. The slo2 growth retardation phenotypes are largely suppressed by supplying sugars or increasing light dosage or the concentration of CO(2) . The SLO2 protein is localized in mitochondria. We identified four RNA editing defects and reduced editing at three sites in slo2 mutants. The resulting amino acid changes occur in four mitochondrial proteins belonging to complex I of the electron transport chain. Both the abundance and activity of complex I are highly reduced in the slo2 mutants, as well as the abundance of complexes III and IV. Moreover, ATP, NAD+, and sugar contents were much lower in the mutants. In contrast, the abundance of alternative oxidase was significantly enhanced. We propose that SLO2 is required for carbon energy balance in Arabidopsis by maintaining the abundance and/or activity of complexes I, III, and IV of the mitochondrial electron transport chain.  相似文献   

2.
3.
4.
5.
In plants, RNA editing is observed in mitochondria and plastids, changing selected C nucleotides into Us in both organelles. We here identify the PPR (pentatricopeptide repeat) protein MEF3 (mitochondrial editing factor 3) of the E domain PPR subclass by genetic mapping of a variation between ecotypes Columbia (Col) and Landsberg erecta (Ler) in Arabidopsis thaliana to be required for a specific RNA editing event in mitochondria. The Ler variant of MEF3 differs from Col in two amino acids in repeats 9 and 10, which reduce RNA editing levels at site atp4-89 to about 50% in Ler. In a T-DNA insertion line, editing at this site is completely lost. In Vitis vinifera the gene most similar to MEF3 continues into a DYW extension beyond the common E domain. Complementation assays with various combinations of PPR and E domains from the vine and A. thaliana proteins show that the vine E region can substitute for the A. thaliana E region with or without the DYW domain. These findings suggest that the additional DYW domain does not disturb the MEF3 protein function in mitochondrial RNA editing in A. thaliana.  相似文献   

6.
7.
8.
RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C) to uridine (U) mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35) to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209), for cytochrome b (cob-286) and for subunit 4 of complex I (nad4-1373), respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.  相似文献   

9.
Pentatricopeptide repeat (PPR) proteins with an E domain have been identified as specific factors for C to U RNA editing in plant organelles. These PPR proteins bind to a unique sequence motif 5′ of their target editing sites. Recently, involvement of a combinatorial amino acid code in the P (normal length) and S type (short) PPR domains in sequence specific RNA binding was reported. PPR proteins involved in RNA editing, however, contain not only P and S motifs but also their long variants L (long) and L2 (long2) and the S2 (short2) motifs. We now find that inclusion of these motifs improves the prediction of RNA editing target sites. Previously overlooked RNA editing target sites are suggested from the PPR motif structures of known E-class PPR proteins and are experimentally verified. RNA editing target sites are assigned for the novel PPR protein MEF32 (mitochondrial editing factor 32) and are confirmed in the cDNA.  相似文献   

10.
A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.  相似文献   

11.
12.
The facilitators for specific cytosine-to-uridine RNA-editing events in plant mitochondria and plastids are pentatricopeptide repeat (PPR)-containing proteins with specific additional C-terminal domains. Here we report the related PPR proteins mitochondrial editing factor 8 (MEF8) and MEF8S with only five such repeats each to be both involved in RNA editing at the same two sites in mitochondria of Arabidopsis thaliana. Mutants of MEF8 show diminished editing in leaves but not in pollen, whereas mutants of the related protein MEF8S show reduced RNA editing in pollen but not in leaves. Overexpressed MEF8 or MEF8S both increase editing at the two target sites in a mef8 mutant. Double mutants of MEF8 and MEF8S are not viable although both identified target sites are in mRNAs for nonessential proteins. This suggests that MEF8 and MEF8S may have other essential functions beyond these two editing sites in complex I mRNAs.  相似文献   

13.
14.
15.
16.
The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C‐to‐U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co‐immunoprecipitation (co‐IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size‐exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing site rps14 C80. RNA content peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts with RNase A abolished the relationship of editing activity with high‐MW fractions, suggesting a structural RNA component in native complexes. By immunoblotting, RIP9, OTP86, OZ1 and ORRM1 were shown to be present in active gel filtration fractions, though OZ1 and ORRM1 were mainly found in low‐MW inactive fractions. Active editing factor complexes were affinity‐purified using anti‐RIP9 antibodies, and orthologs to putative Arabidopsis thaliana RNA editing factor PPR proteins, RIP2, RIP9, RIP1, OZ1, ORRM1 and ISE2 were identified via mass spectrometry. Western blots from co‐IP studies revealed the mutual association of OTP86 and OZ1 with native RIP9 complexes. Thus, RIP9 complexes were discovered to be highly associated with C‐to‐U RNA editing activity and other editing factors indicative of their critical role in vascular plant editosomes.  相似文献   

17.
18.
19.
20.
Mitochondria play an important role in maintaining metabolic and energy homeostasis in the plant cell. Thus, perturbation of mitochondrial structure and function will affect plant growth and development. Arabidopsis slow growth3 (slo3) is defective in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. Analysis of slo3 mitochondrial RNA metabolism revealed that the splicing of nad7 intron 2 is impaired, which leads to a dramatic reduction in complex I activity. So the SLO3 PPR protein is a splicing factor that is required for the removal of nad7 intron 2 in Arabidopsis. The slo3 mutant plants have obvious phenotypes with severe growth retardation and delayed development. The size of root apical meristem (RAM) is reduced and the production of meristem cells is decreased in slo3. Furthermore, the rosette leaves of slo3 are curled or crinkled, which may be derived from uneven growth of the leaf surface. The underlying mechanisms by which dysfunctional mitochondria affect these growth and developmental phenotypes have yet to be established. Nonetheless, plant hormone auxin is known to play an important role in orchestrating the development of RAM and leaf shape. It is possible that dysfunctional mitochondria may interact with auxin signaling pathways to regulate the boundary of RAM and the cell division arrest front during leaf growth in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号