首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.  相似文献   

2.
Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after gamma irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.  相似文献   

3.
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.  相似文献   

4.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

5.
A fundamental aspect of cancer development is cancer cell proliferation. Seeking for chemical agents that can interfere with cancer cell growth has been of great interest over the years. In our study, we found that a benzoxazine derivative, (6-tert-butyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl) methanol (TBM), could inhibit cell growth and caused significant cell cycle arrest in pulmonary adenocarcinoma A549 and H460 cells with wild-type p53, while not affecting the cell cycle distribution in p53-deleted H1299 lung adenocarcinoma cells. Since P53 plays an important role in regulating cell cycle progression, we analyzed the protein level of p53 by Western blot, and detected a significant elevation of p53 level after TBM treatment in A549 and H460 cells. The data suggested that TBM might specifically inhibit the proliferation of p53 wild-type lung adenocarcinoma cells through a p53-dependent cell cycle control pathway. More interestingly, results indicated that TBM might serve as a useful tool for studying the molecular mechanisms of lung cancer cell growth and cell cycle control, especially for the biologic process regulated by P53.  相似文献   

6.
This study examined the effects of p53 gene status on DNA damage-induced cell death and chemosensitivity to various chemotherapeutic agents in non-small cell lung cancer (NSCLC) cells. A mutant p53 gene was introduced into cells carrying the wild-type p53 gene and also vice versa to introduce the wild-type p53 gene into cells carrying the mutant p53 gene. Chemosensitivity and DNA damage-induced apoptosis in these cells were then examined. This study included five cell lines, NCI-H1437, NCI-H727, NCI-H441 and NCI-H1299 which carry a mutant p53 gene and NCI-H460 which carries a wild-type p53 gene. Mutant p53-carrying cells were transfected with the wild-type p53 gene, while mutant p53 genes were introduced into NCI-H460 cells. These p53 genes were individually mutated at amino acid residues 143, 175, 248 and 273. The representative cell line NCI-H1437 cells transfected with wild-type p53 gene (H1437/wtp53) showed a dramatic increase in susceptibility to three anticancer agents (7-fold to cisplatin, 21-fold to etoposide, and 20-fold to camptothecin) compared to untransfected or neotransfected H1437 cells. An increase in chemosensitivity was also observed in wild-type p53 transfectants of H727, H441, H1299 cells. The results of chemosensitivity were consistent with the observations on apoptotic cell death. H1437/wtp53 cells, but not H1437 parental cells, exhibited a characteristic feature of apoptotic cell death that generated oligonucleosomal-sized DNA fragments. In contrast, loss of chemosensitivity and lack of p53-mediated DNA degradation in response to anticancer agents were observed in H460 cells transfected with mutant p53. These observations suggest that the increase in chemosensitivity was attributable to wild-type p53 mediation of the process of apoptosis. In addition, our results also suggest that p53 gene status modulates the extent of chemosensitivity and the induction of apoptosis by different anticancer agents in NSCLC cells.  相似文献   

7.
Overexpression of c-Myc represents the most frequently deregulated genetic event in cancer, and therefore c-Myc may represent a good molecular target for cancer therapy. The human lung carcinoma cell line, NCI-H1299, shows resistance to conventional cancer treatments, such as ionizing radiation (IR) and cisplatin, while the lung carcinoma cell line, NCI-H460, is sensitive to treatment with these agents. However, when treated with a chalcone compound [toluenesulfonylamido-chalcone, 4′-(p-toluene sulfonyl amino)-3,4-dihydroxy chalcone (TSHDC)], cell death was dramatically induced in NCI-H1299 cells as compared to NCI-H460 cells. TSHDC-mediated cytotoxicity was not dependent on the status of p53 and p21. However, TSHDC exerted increased c-Myc-dependent reactive oxygen species (ROS) production in NCI-H1299 cells in which c-Myc is overexpressed, while increased ROS production did not occur in A549 or NCI-H460 cells with a low c-Myc level. Several colon and brain cancer cells also showed a correlation between c-Myc expression and TSHDC-mediated increased cell death. Tumor regression by TSHDC was more dramatic in NCI-H1299 cells than NCI-H460 cells, when these cells were grafted to nude mice. However, in the case of IR and cisplatin, NCI-H460 cells were more sensitive than NCI-H1299 cells. From these results, c-Myc-mediated ROS production may be a good target for screening of novel cancer drugs and TSHDC might be a good candidate as a cancer drug, specifically in cancer cells that overexpress c-Myc.  相似文献   

8.
Recent evidence suggests an intriguing link between p53 and the Fas pathway. To evaluate this association further, we utilized a recombinant adenoviral vector (AdWTp53) to overexpress wild-type p53 in lung cancer (A549, H23, EKVX and HOP92) and breast cancer (MDA-MB-231 and MCF-7) cell lines and observed an increase in the Fas/CD95/APO-1 protein levels. Furthermore, this increase correlated with the sensitivity of the cell lines to p53-mediated cytotoxicity. To examine the effects of Fas over-expression in cells resistant to p53 over-expression, we constructed AdFas, an adenoviral vector capable of transferring functional human Fas to cancer cells. Interestingly, infection of p53-resistant MCF-7 cells with AdFas sensitized them to p53-mediated apoptosis. These studies indicate that combined over-expression of Fas and wild-type p53 may be an effective cancer gene therapy approach, especially in cells relatively resistant to p53 over-expression.  相似文献   

9.
Trichloroethylene (TCE) and perchloroethylene (PERC) are volatile organic compounds (VOCs) that are primarily inhaled through the respiratory system. The aim of this study was to elucidate the role of glutathione (GSH) and p53 in TCE- and PERC-induced lung toxicity. Human lung adenocarcinoma cells NCI-H460 (p53-wild-type) have constitutively lower levels of GSH than NCI-H1299 (p53-null) cells. The results showed that exposure to vapor TCE and PERC produced a dose-dependent and more pronounced accumulation of H(2)O(2) in p53-WT H460 than p53-null H1299 cells. The accumulation of H(2)O(2) was accompanied by severe cellular damage, as indicated by the significant increase of lipid peroxidation and apoptosis in p53-WT H460 cells, but not p53-null H1299 cells. Cotreatment of p53-WT H460 cells with free radical scavengers, such as D-mannitol, uric acid, and sodium selenite, significantly attenuated the TCE- or PERC-induced lipid peroxidation. In contrast, depletion of GSH in p53-null H1299 cells enhanced TCE- or PERC-induced lipid peroxidation. The levels of p53 and Bax proteins were elevated, while Bcl-2 protein was downregulated in TCE- or PERC-treated p53-WT H460 cells. Activity of caspase 3, the apoptotic executioner, was also significantly enhanced in TCE- or PERC-treated cells. These data suggest that, in human lung cancer cells, GSH plays a vital role in the protection of TCE- and PERC-induced oxidative stress and apoptosis, which may be mediated through a p53-dependent pathway.  相似文献   

10.
Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells) in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells) isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d) in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy) analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.  相似文献   

11.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. However, the regulation of survivin and p53 on the quercetin-induced cell growth inhibition and apoptosis in cancer cells remains unclear. In this study, we investigated the roles of survivin and p53 in the quercetin-treated human lung carcinoma cells. Quercetin (20-80 mum for 24 h) induced the cytotoxicity and apoptosis in both A549 and H1299 lung carcinoma cells in a concentration-dependent manner. Additionally, quercetin inhibited the cell growth, increased the fractions of G(2)/M phase, and raised the levels of cyclin B1 and phospho-cdc2 (threonine 161) proteins. Moreover, quercetin induced abnormal chromosome segregation in H1299 cells. The survivin proteins were highly expressed in mitotic phase and were located on the midbody of cytokinesis; however, the survivin proteins were increased and concentrated on the nuclei following quercetin treatment in the lung carcinoma cells. Transfection of a survivin antisense oligodeoxynucleotide enhanced the quercetin-induced cell growth inhibition and cytotoxicity. Subsequently, quercetin increased the levels of total p53 (DO-1), phospho-p53 (serine 15), and p21 proteins, which were translocated to the nuclei in A549 cells. Treatment with a specific p53 inhibitor, pifithrin-alpha, or transfection of a p53 antisense oligodeoxynucleotide enhanced the cytotoxicity of the quercetin-treated cells. Furthermore, transfection of a small interfering RNA of p21 enhanced the quercetin-induced cell death in A549 cells. Together, our results suggest that survivin can reduce the cell growth inhibition and apoptosis, and p53 elevates the p21 level, which may attenuate the cell death in the quercetin-treated human lung carcinoma cells.  相似文献   

12.
Resveratrol (trans-3,4,5’ –trihydroxystilbene) is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3) was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS) generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.  相似文献   

13.
Radiotherapy is an effective approach to treating many types of cancer. Recent progress in radiotherapy technology, such as intensity-modulated radiation therapy (IMRT) and three-dimensional (3D) radiotherapy, allow precise energy transfer to the tumor, which has improved local control rates. However, the emergence of tolerant cells during or after radiotherapy remains problematic. In the present study, we first established a cell population from H1299, the p53-null non-small cell lung cancer cell line, by 10 Gy irradiation using 6 MV X-rays. The radio- and chemosensitivity of this cell population (referred to as H1299-IR) was determined using colony formation analyses and MTS assays. Compared with the parental cell line, the radiosensitivity of H1299-IR was apparently the same. H1299 and H1299-IR were both more radio tolerant than the A549 cell line. However, H1299-IR became significantly more sensitive to cisplatin, an antitumor agent. After exposure to 25 mug/ml cisplatin for 2 h, parental cells steadily grew during the MTS assay, whereas the sensitivity of H1299-IR cells doubled both at 24 and 48 h. Microarray analysis of over 30,000 H1299-IR genes (Agilent Technology) revealed that 12 and 15 genes were up- (> 2.0) and down- (< 2.0) regulated, respectively. Rad51d (homologous recombination repair protein) gene was down-regulated 2.8-fold, whereas matrix metalloproteinase 1 (collagenase-1) gene was up-regulated 4.4-fold. These results indicated that some p53-null non-small cell lung cancers could be successfully treated when X-ray radiotherapy was administered with subsequent or concurrent cisplatin chemotherapy.  相似文献   

14.
Resveratrol is a natural compound that has been intensely studied due to its role in cancer prevention and potential as an anti-cancer therapy. Its effects include induction of apoptosis and senescence-like growth inhibition. Here, we report that two cancer cell lines (U-2 OS and A549) differ significantly in their molecular responses to resveratrol. Specifically, in U-2 OS cells, the activation of the p53 pathway is attenuated when compared to the activation in A549 cells. This attenuation is accompanied by a point mutation (458: CGA→TGA) in the PPM1D gene and overexpression of the encoded protein, which is a negative regulator of p53. Experimentally induced knockdown of PPM1D in U-2 OS cells resulted in slightly increased activation of the p53 pathway, most clearly visible as stronger phosphorylation of p53 Ser37. When treated with nutlin-3a, a non-genotoxic activator of p53, U-2 OS and A549 cells both responded with substantial activation of the p53 pathway. Nutlin-3a improved the clonogenic survival of both cell lines treated with resveratrol. This improvement was associated with lower activation of DNA-damage signaling (phosphorylation of ATM, CHK2, and histone H2AX) and higher accumulation of cells in the G1 phase of the cell cycle. Thus, the hyperactivation of p53 by nutlin-3a helps to preserve the replicative potential of cells exposed to resveratrol.  相似文献   

15.
Kalra N  Roy P  Prasad S  Shukla Y 《Life sciences》2008,82(7-8):348-358
Resveratrol, a plant constituent enriched in the skin of grapes, is one of the most promising agents for chemoprevention. In the present study, resveratrol-induced apoptosis in 7, 12-dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA) promoted, mouse skin tumors. The chemopreventive effects of resveratrol in terms of delayed onset of tumorigenesis, cumulative number of tumors and average number of tumors/mouse were recorded. Resveratrol treatment resulted in regression of tumors (28%) after withdrawal of the TPA treatment. Induction of apoptosis by resveratrol in DMBA-TPA induced skin tumors was recorded by the appearance of a sub-G1 fraction (30%) using flow cytometry and an increase in the number of apoptotic cells by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay. Western blot analysis combined with multivariable flow cytometry, showed that resveratrol application induces the expression of the p53 and pro-apoptotic Bax, with concomitant decrease in anti-apoptotic protein Bcl-2. Alteration in Bax/Bcl2 ratio by resveratrol treatment resulted in apoptosis, which was associated with the release of cytochrome c and induction of apoptotic protease-activating factor-1(APAF-1). Further, this effect was found to result in cleaved fragments of caspase-9,-3, and poly (ADP-ribose) polymerase (PARP). These findings demonstrate for the first time that resveratrol induces apoptosis through activation of p53 activity in mouse skin tumors, thereupon suggesting its chemopreventive activity, through the modulation of proteins involved in mitochondrial pathway of apoptosis.  相似文献   

16.
The p53 tumor suppressor is a mutational target of environmental carcinogen anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). We now demonstrate that p53 plays an important role in regulation of cellular responses to BPDE. Exposure of p53-null H1299 human lung cancer cells to BPDE resulted in S and G2 phase cell cycle arrest, but not mitotic block, which correlated with induction of cyclin B1 protein expression, down-modulation of cell division cycle 25C (Cdc25C) and Cdc25B protein levels, and hyperphosphorylation of Cdc25C (S216), cyclin-dependent kinase 1 (Cdk1; Y15), checkpoint kinase 1 (Chk1; S317 and S345) and Chk2 (T68). The BPDE-induced S phase block, but not the G2/M phase arrest, was significantly attenuated by knockdown of Chk1 protein level. The BPDE-mediated accumulation of sub-diploid fraction (apoptotic cells) was significantly decreased in H1299 cells transiently transfected with both Chk1 and Chk2 specific siRNAs. The H460 human lung cancer cell line (wild-type p53) was relatively more sensitive to BPDE-mediated growth inhibition and enrichment of sub-diploid apoptotic fraction compared with H1299 cells. The BPDE exposure failed to activate either S or G2 phase checkpoint in H460 cells. Instead, the BPDE-treated H460 cells exhibited a nearly 8-fold increase in sub-diploid apoptotic cells that was accompanied by phosphorylation of p53 at multiple sites. Knockdown of p53 protein level in H460 cells attenuated BPDE-induced apoptosis but enforced activation of S and G2 phase checkpoints. In conclusion, the present study points towards an important role of p53 in regulation of cellular responses to BPDE in human lung cancer cells.  相似文献   

17.

Background

We have previously shown that prostate cancer LNCaP cells are resistant to TRAIL, and downregulation of PI-3K/Akt pathway by molecular and pharmacological means sensitizes cells to undergo apoptosis by TRAIL and curcumin. The purpose of this study was to examine the molecular mechanisms by which resveratrol sensitized TRAIL-resistant LNCaP cells.

Results

Resveratrol inhibited growth and induced apoptosis in androgen-dependent LNCaP cells, but had no effect on normal human prostate epithelial cells. Resveratrol upregulated the expression of Bax, Bak, PUMA, Noxa, Bim, TRAIL-R1/DR4 and TRAIL-R2/DR5, and downregulated the expression of Bcl-2, Bcl-XL, survivin and XIAP. Treatment of LNCaP cells with resveratrol resulted in generation of reactive oxygen species, translocation of Bax and p53 to mitochondria, subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, AIF, Smac/DIABLO and Omi/HtrA2), activation of caspase-3 and caspase-9 and induction of apoptosis. The ability of resveratrol to sensitize TRAIL-resistant LNCaP cells was inhibited by dominant negative FADD, caspase-8 siRNA or N-acetyl cysteine. Smac siRNA inhibited resveratrol-induced apoptosis, whereas Smac N7 peptide induced apoptosis and enhanced the effectiveness of resveratrol.

Conclusion

Resveratrol either alone or in combination with TRAIL or Smac can be used for the prevention and/or treatment of human prostate cancer.  相似文献   

18.
Lung cancer is one of the most common malignancies worldwide. In this Letter, novel MOM-ether analogs of isosteviol were designed and synthesized to be tested for anticancer activities against H1299 lung cancer cell lines. The effects of these derivatives were studied in H1299 human large cell lung carcinoma cells that are null for p53 and compared to normal counterparts NL-20 normal lung epithelial cells. The initial screening of twelve MOM-ether analogs of isosteviol derivatives on H1299 lung cancer cells by MTT assay revealed that two derivatives (an ester and a carbamate) were the most potent in reducing cell viability. The IC50 values for these derivatives were determined to be 14 and 21 μM respectively. We compared the cytotoxicity of the best derivatives in H1299 lung cancer cells and NL-20 normal lung epithelial cells. Both derivatives showed lower cytotoxic effects on NL-20 normal lung epithelial cells. Moreover, both derivatives induced apoptosis in H1299 lung cancer cells more than NL-20 normal lung epithelial cells.  相似文献   

19.
Lai JC  Cheng YW  Goan YG  Chang JT  Wu TC  Chen CY  Lee H 《DNA Repair》2008,7(8):1352-1363
Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with wild-type p53, MGMT promoter methylation is independent of tumor stage. To elucidate whether p53 participates in MGMT promoter methylation, we engineered three cell models: A549 cells with RNA interference (RNAi)-mediated knockdown of p53, and p53 null H1299 cells transfected with either wild-type p53 (WT-p53) or mutant-p53 (L194R, and R249S-p53). Knockdown of endogenous p53 increased MGMT promoter methylation in A549 cells, and transient expression of WT-p53 in p53 null H1299 cells diminished MGMT promoter methylation, whereas the MGMT promoter methylation status were unchanged by expression of mutant-p53. Previous work showed that p53 modulates DNA-methyltransferase 1 (DNMT1) expression; we additionally examined chromatin remodeling proteins expression levels of histone deacetylase 1 (HDAC1). We found that p53 knockdown elevated expression of both DNMT1 and HDAC1 in A549 cells. Conversely, expressing WT-p53 in p53 null H1299 cells reduced DNMT1 and HDAC1 expression, but the reduction of both proteins was not observed in expressing mutant-p53 H1299 cells. CHIP analysis further showed that DNMT1 and HDAC1 binding to the MGMT promoter was increased by MGMT promoter methylation and decreased by MGMT promoter demethylation. In conclusion, MGMT promoter methylation modulated by p53 status could partially promote p53 mutation occurrence in advanced lung tumors.  相似文献   

20.
Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are intact in glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号