共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Cell cycle (Georgetown, Tex.)》2013,12(20):3118-3123
The mammalian target of rapamycin (mTOR) assembles a signaling network that transduces nutrient signals and various other stimuli to regulate a wide range of cellular functions. Of the two distinct mTOR complexes, mTORC1 is under the control of the TSC-Rheb pathway, which serves as an integrator of multiple upstream signals. A lipid signaling cascade involving phospholipase D (PLD) and phosphatidic acid (PA) has also been known to mediate mitogenic signals upstream of mTORC1. A new study now reveals a direct connection between these two regulatory pathways and demonstrates that PLD1 is an effector of Rheb in the activation of mTORC1. A novel role of PLD as a nutrient sensor has also been suggested. In this extra-view, we discuss the emerging importance of PA and PLD in the mTORC1 signaling network and the biological processes it governs. We also consider the implications from several recent findings and propose mechanistic models of PLD-mTOR signaling to be tested in the near future. 相似文献
3.
Effective control of the Ca2+ homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca2+ concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca2+signaling at subcellular resolution. Members of the superfamily of EF-hand Ca2+-binding proteins are effective to either attenuate intracellular Ca2+ transients as stochiometric buffers or function as Ca2+ sensors whose conformational change upon Ca2+ binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca2+-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca2+-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca2+-binding proteins whose expression precedes that of many other Ca2+-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca2+-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca2+signaling under physiological and disease conditions in the nervous system and beyond. 相似文献
4.
The phenomenology of nuclear Ca(2+) dynamics has experienced important progress revealing the broad range of cellular processes that it regulates. Although several agonists can mobilize Ca(2+) from storage in the nuclear envelope (NE) to the intranuclear compartment (INC), the mechanisms of Ca(2+) signaling in the nucleus still remain uncertain. Here we report that the NE/INC complex can function as an inositol-1,4,5-trisphosphate (InsP(3))-controlled Ca(2+) oscillator. Thin optical sectioning combined with fluorescent labeling of Ca(2+) probes show in cultured airway epithelial ciliated cells that ATP can trigger periodic oscillations of Ca(2+) in the NE ([Ca(2+)](NE)) and corresponding pulses of Ca(2+) release to the INC. Identical results were obtained in InsP(3)-stimulated isolated nuclei of these cells. Our data show that [Ca(2+)](NE) oscillations and Ca(2+) release to the INC result from the interplay between the Ca(2+)/K(+) ion-exchange properties of the intralumenal polyanionic matrix of the NE and two Ca(2+)-sensitive ion channels-an InsP(3)-receptor-Ca(2+) channel and an apamin-sensitive K(+) channel. A similar Ca(2+) signaling system operating under the same functional protocol and molecular hardware controls Ca(2+) oscillations and release in/to the endoplasmic reticulum/cytosol and in/to the granule/cytosol complexes in airway and mast cells. These observations suggest that these intracellular organelles share a remarkably conserved mechanism of InsP(3)-controlled frequency-encoded Ca(2+) signaling. 相似文献
5.
Lysophospholipids in the limelight: autotaxin takes center stage 总被引:10,自引:0,他引:10
Moolenaar WH 《The Journal of cell biology》2002,158(2):197-199
Lysophosphatidic acid (LPA) is a serum phospholipid that evokes growth factor-like responses in many cell types through the activation of its G protein-coupled receptors. Although much is known about LPA signaling, it has remained unclear where and how bioactive LPA is produced. Umezu-Goto et al. (2002)(this issue, page 227) have purified a serum lysophospholipase D that generates LPA from lysophosphatidylcholine and found it to be identical to autotaxin, a cell motility-stimulating ectophosphodiesterase implicated in tumor progression. This result is surprising, as there was previously no indication that autotaxin could act as a phospholipase. 相似文献
6.
McCollum D 《Current biology : CB》2004,14(22):R953-R955
The central spindle plays a key role in cytokinesis. Recent studies have shed new light on how assembly of the central spindle is regulated, and also support a role for both the central spindle and astral microtubules in cytokinesis in animal cells. 相似文献
7.
8.
Novel concepts in insulin regulation of hepatic gluconeogenesis 总被引:1,自引:0,他引:1
Barthel A Schmoll D 《American journal of physiology. Endocrinology and metabolism》2003,285(4):E685-E692
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes. 相似文献
9.
10.
Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating 总被引:1,自引:0,他引:1
Cheung KH Shineman D Müller M Cárdenas C Mei L Yang J Tomita T Iwatsubo T Lee VM Foskett JK 《Neuron》2008,58(6):871-883
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention. 相似文献
11.
Andreas Till Simone Lipinski David Ellinghaus Gabriele Mayr Suresh Subramani Philip Rosenstiel Andre Franke 《Autophagy》2013,9(8):1256-1257
To advance understanding of the complex genetics of Crohn disease (CD) we sequenced 42 whole exomes of patients with CD and five healthy control individuals, resulting in identification of a missense mutation in the autophagy receptor calcium binding and coiled-coil domain 2 (CALCOCO2/NDP52) gene. Protein domain modeling and functional studies highlight the potential role of this mutation in controlling NFKB signaling downstream of toll-like receptor (TLR) pathways. We summarize our recent findings and discuss the role of autophagy as a major modulator of proinflammatory signaling in the context of chronic inflammation. 相似文献
12.
Theo J.C. Van Berkel Johan K. Kruijt Johan F. Koster 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,500(2):267-276
- 1. 1. Incubation of isolated hepatocytes with glucagon (10−6 M) or dibutyryl cyclic AMP (0.1 mM) causes a decrease in pyruvate kinase activity of 50%, measured at suboptimal substrate (phosphoenolpyruvate) concentrations and 1 mM Mgfree2+. The magnitude of the decrease in activity is not influenced by the applied extracellular concentrations of lactate (1 and 5 mM), glucose (5 and 30 mM) or fructose (10 and 25 mM). With all three substrates comparable inhibition percentages are induced by glucagon or dibutyryl cyclic AMP.
- 2. 2. The extent of inhibition of pyruvate kinase induced by incubation of hepatocytes with glucagon or dibutytyl cyclic AMP is not influenced by the extracellular Ca2+ concentration nor by the presence of 2 mM EGTA. The reactivation of pyruvate kinase seems to be inhibited by a high concentration of extracellular Ca2+ (2.6 mM) as compared to a low concentration of extracellular Ca2+ (0.26 mM).
- 3. 3. Incubation of hepatocytes in a Na+-free, high K+-concentration medium does not influence the magnitude of the pyruvate kinase inhibition induced by dibutyryl cyclic AMP. However, the reactivation reaction is stimulated under these incubation conditions.
- 4. 4. Incubation of hepatocytes with dibutyryl cyclic GMP (0.1 mM) leads to a 25% decrease in pyruvate kinase activity. The magnitude of the inhibition by dibutyryl cyclic (GMP) is not influenced by the presence of pyruvate (1 mM) or glucose (5 mM and 30 mM).
- 5. 5. The relative insensitivity of the pyruvate kinase inhibition induced by glucagon, dibutyryl cyclic AMP and dibutyryl cyclic GMP to the extracellular environment leads to the conclusion that the hormonal regulation of pyruvate kinase is not the only site of hormonal regulation of glycolysis and gluconeogenesis. It is concluded that hormonal regulation of pyruvate kinase activity is exerted by changes in the degree of (de)phosphorylation of the enzyme reflecting acute hormonal control as well as by changes in the concentration of the allosteric activator fructose 1,6-diphosphate. The latter depends at least in part on the hormonal control of the phosphofructokinase-fructose-1,6-phosphatase cycle.
Abbreviations: Bt2-cAMP, dibutyryl cyclic AMP; Bt2-cGMP, dibutyryl cyclic GMP 相似文献
13.
Ca2+ efficiently inhibits binding of inositol 1,4,5-trisphosphate (InsP3) to the InsP3 receptor in cerebellar membranes but not to the purified receptor. We have now investigated the mechanism of action by which Ca2+ inhibits InsP3 binding. Our results suggest that Ca2+ does not cause the stable association of a Ca(2+)-binding protein with the receptor. Instead, Ca2+ leads to the production of a soluble, heat-stable, low molecular weight substance from cerebellar membranes that competes with InsP3 for binding. This inhibitory substance probably represents endogenously generated InsP3 as judged by the fact that it co-purifies with InsP3 on anion-exchange chromatography, competes with [3H]InsP3 binding in a pattern similar to unlabeled InsP3, and is in itself capable of releasing 45Ca2+ from permeabilized cells. A potent Ca(2+)-activated phospholipase C activity producing InsP3 was found in cerebellar microsomes that exhibited a Ca2+ dependence identical to the Ca(2+)-dependent inhibition of InsP3 binding. Together these results suggest that the Ca(2+)-dependent inhibition of InsP3 binding to the cerebellar receptor is due to activation of a Ca(2+)-sensitive phospholipase C enriched in cerebellum. Nevertheless, Ca2+ probably also modulates the InsP3 receptor function by a direct interaction with the receptor that does not affect InsP3 binding but regulates InsP3-dependent channel gating. 相似文献
14.
15.
Vacuole fusion requires Sec18p-dependent acylation of the armadillo-repeat protein Vac8p that has been isolated with cis-SNARE complexes. To gain more insight into the mechanism of acylation, we analyzed the palmitoylation reaction on isolated vacuoles or in vacuolar detergent extracts. Recombinant Vac8p is palmitoylated when added to vacuoles and is anchored to membranes after modification. The palmitoyl acyltransferase (PAT) extracted from vacuolar membranes is functional in detergent extracts and shows all characteristics of an enzymatic activity: It modifies exogenous Vac8p in a temperature-, dose- and time-dependent manner, and is sensitive to bromo-palmitate, a known inhibitor of protein palmitoylation in vivo. Importantly, PAT is specific for palmitoyl-CoA, since myristoyl- and stearyl-CoA can compete with labeled Pal-CoA only at 10-fold higher amounts. 相似文献
16.
The InsP3R Ca2+ release channel has a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing the sensitivity of the channel to inhibition by high [Ca2+]i. To determine if relieving Ca2+ inhibition is sufficient for channel activation, we examined single-channel activities in low [Ca2+]i in the absence of InsP3, by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent channel activities with low open probability Po ( approximately 0.03) were observed in [Ca2+]i < 5 nM with the same frequency as in the presence of InsP3, whereas no activities were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i of the channel to be 1.2-4.0 nM in the absence of InsP3, and demonstrate that the channel can be active when all of its ligand-binding sites (including InsP3) are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies of [Ca2+]i and InsP3 regulation of steady-state channel gating behavior of types 1 and 3 InsP3R isoforms, including spontaneous InsP3-independent channel activities, the tetrameric channel can adopt six different conformations, the equilibria among which are controlled by two inhibitory and one activating Ca2+-binding and one InsP3-binding sites in a manner outlined in the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the Ca2+ affinities of the high-affinity inhibitory sites in different conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent low-affinity inhibitory site. The model also suggests that besides the ligand-regulated gating mechanism, the channel has a ligand-independent gating mechanism responsible for maximum channel Po being less than unity. The validity of this model was established by its successful quantitative prediction of channel behavior after it had been exposed to ultra-low bath [Ca2+]. 相似文献
17.
Shumilina E Huber SM Lang F 《American journal of physiology. Cell physiology》2011,300(6):C1205-C1214
Dendritic cells (DCs) are highly versatile antigen-presenting cells critically involved in both innate and adaptive immunity as well as maintenance of self-tolerance. DC function is governed by Ca(2+) signaling, which directs the DC responses to diverse antigens, including Toll-like receptor ligands, intact bacteria, and microbial toxins. Ca(2+)-sensitive DC functions include DC activation, maturation, migration, and formation of immunological synapses with T cells. Moreover, alterations of cytosolic Ca(2+) trigger immune suppression or switch off DC activity. Ca(2+) signals are generated by the orchestration of Ca(2+) transport processes across plasma, endoplasmic reticulum, and inner mitochondrial membrane. These processes include active pumping of Ca(2+), Ca(2+)/Na(+) antiport, and electrodiffusion through Ca(2+)-permeable channels or uniporters. Ca(2+) channels in the plasma membrane such as Ca(2+) release-activated Ca(2+) or L-type Ca(2+) channels are tightly regulated by the membrane potential which in turn depends on the activity of voltage-gated K(+) or Ca(2+)-activated nonselective cation channels. The rapidly growing knowledge on the function and regulation of these membrane transport proteins provides novel insight into pathophysiological mechanisms underlying dysfunction of the immune system and opens novel therapeutic opportunity to favorably influence the function of the immune system. 相似文献
18.
19.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms. 相似文献
20.
InsP3- and Ca2(+)-induced Ca2+ release in single mouse oocytes 总被引:1,自引:0,他引:1
A Peres 《FEBS letters》1990,275(1-2):213-216
To better understand the mechanism of intracellular Ca2+ mobilization, mouse oocytes were micro-injected with 'caged'-inositol-1,4,5 triphosphate caged-InsP3) together with the Ca2+ indicator Fluo-3 to directly induce and monitor Ca2+ redistribution. Photo-released InsP3 elicits [Ca2+]i changes exhibiting several kinetic phases and threshold behaviour. Often Ca2+ oscillations were induced after a single InsP3 pulse. Autoregenerative Ca2+ transients could also be induced by injections of Ca2+ itself, demonstrating unequivocally the presence of a Ca2(+)-induced Ca2(+)-release mechanism in these cells. 相似文献