首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the phenotypes of these viruses in vitro in human, mouse, and duck cells as well as in vivo in mice and ducks. In human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to an increase in virus replication and to a more severe lung inflammation associated with a higher level of production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.Interspecies transmission of influenza viruses can lead to the introduction of new subtypes of influenza virus into the human population (31). The emergence of a new influenza virus that is able to spread efficiently between humans can cause a pandemic, as evidenced by the recent introduction of the swine-origin 2009 A/H1N1 virus to humans (10). The spread of avian influenza A viruses from birds to humans could also lead to the introduction of a new viral subtype with pandemic potential (22). Fortunately, the efficient replication of avian influenza A viruses in humans and interhuman transmission are generally limited and require further adaptations of the virus to humans. One determinant of host adaptation lies in the receptor binding specificity of hemagglutinin (HA) (52). In addition, several reports have underlined the role of amino acid 627 of the PB2 polymerase subunit in determining viral host range and virulence (15, 36, 44, 45). Large-scale sequence analyses of viruses isolated from different bird and mammalian species have been performed in order to identify previously unrecognized determinants of host adaptation and virulence (2, 32). Those studies have identified a 4-amino-acid motif in the C-terminal domain of NS1 that could represent a previously unnoticed host adaptation motif. Indeed, the vast majority of avian influenza viruses have an NS1 protein with a C-terminal ESEV domain, while typical human viruses have a conserved RSKV domain. The conservation of these species-specific motifs in the NS1 protein despite important sequence variability in the rest of the protein suggests that these four C-terminal amino acids are under strong selection pressure in their respective natural hosts (3, 5, 25).NS1 is a multifunctional protein implicated in the regulation of viral gene expression and in the inhibition of the host antiviral response (12). In order to test the role of these newly identified NS1 domains, Jackson et al. previously introduced various C-terminal motifs into NS1 of the mouse-adapted human influenza virus A/WSN/33 strain by use of reverse genetics (24). Mice inoculated with a virus containing an avian C-terminal ESEV NS1 domain had high viral loads in the lungs and decreased survival compared to mice inoculated with a virus containing a C-terminal RSKV domain. These results showed that the C-terminal ESEV motif found in avian NS1 proteins increases virulence in mice when introduced into a human strain of influenza virus. Whether this finding also applies to avian influenza viruses remains unknown. Moreover, whether the C-terminal ESEV domain of NS1 increases replication in human cells remains unknown. Finally, how the C-terminal domains of NS1 modulate virulence in nonmammalian hosts, such as birds, is also unknown.Here, we assessed the contribution of the C-terminal domains of NS1 to the pathogenicity of an avian influenza virus. By using reverse genetics, we generated H7N1 viruses containing an NS1 protein with a C-terminal avian ESEV domain or a C-terminal human RSKV domain. The replications of these viruses in human, mouse, and duck cell were compared. In addition, we assessed their pathogenicity in mice and ducks. Our results show that the C-terminal RSKV domain increases the replication of an avian influenza virus in human cells. To our surprise, we observed that the C-terminal RSKV domain increases replication in ducks. In contrast, the C-terminal ESEV domain increases virulence in mice. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.  相似文献   

2.
Hepatitis C virus (HCV) is the main agent of acute and chronic liver diseases leading to cirrhosis and hepatocellular carcinoma. The current standard therapy has limited efficacy and serious side effects. Thus, the development of alternate therapies is of tremendous importance. HCV NS5A (nonstructural 5A protein) is a pleiotropic protein with key roles in HCV replication and cellular signaling pathways. Here we demonstrate that NS5A dimerization occurs through Domain I (amino acids 1-240). This interaction is not mediated by nucleic acids because benzonase, RNase, and DNase treatments do not prevent NS5A-NS5A interactions. Importantly, DTT abrogates NS5A-NS5A interactions but does not affect NS5A-cyclophilin A interactions. Other reducing agents such as tris(2-carboxyethyl)phosphine and 2-mercaptoethanol also abrogate NS5A-NS5A interactions, implying that disulfide bridges may play a role in this interaction. Cyclophilin inhibitors, cyclosporine A, and alisporivir and NS5A inhibitor BMS-790052 do not block NS5A dimerization, suggesting that their antiviral effects do not involve the disruption of NS5A-NS5A interactions. Four cysteines, Cys-39, Cys-57, Cys-59, and Cys-80, are critical for dimerization. Interestingly, the four cysteines have been proposed to form a zinc-binding motif. Supporting this notion, NS5A dimerization is greatly facilitated by Zn(2+) but not by Mg(2+) or Mn(2+). Importantly, the four cysteines are vital not only for viral replication but also critical for NS5A binding to RNA, revealing a correlation between NS5A dimerization, RNA binding, and HCV replication. Altogether our data suggest that NS5A-NS5A dimerization and/or multimerization could represent a novel target for the development of HCV therapies.  相似文献   

3.
Hepatitis C virus (HCV) NS4A is a single-pass transmembrane (TM) protein essential for viral replication and particle assembly. The sequence of the NS4A TM domain is highly conserved, suggesting that it may be important for protein-protein interactions. To test this hypothesis, we measured the potential dimerization of the NS4A TM domain in a well-characterized two-hybrid TM protein interaction system. The NS4A TM domain exhibited a strong homotypic interaction that was comparable in affinity to glycophorin A, a well-studied human blood group antigen that forms TM homodimers. Several mutations predicted to cluster on a common surface of the NS4A TM helix caused significant reductions in dimerization, suggesting that these residues form an interface for NS4A dimerization. Mutations in the NS4A TM domain were further examined in the JFH-1 genotype 2a replicon system; importantly, all mutations that destabilized NS4A dimers also caused defects in RNA replication and/or virus assembly. Computational modeling of NS4A TM interactions suggests a right-handed dimeric interaction of helices with an interface that is consistent with the mutational effects. Furthermore, defects in NS4A oligomerization and virus particle assembly of two mutants were rescued by NS4A A15S, a TM mutation recently identified through forward genetics as a cell culture-adaptive mutation. Together, these data provide the first example of a functionally important TM dimer interface within an HCV nonstructural protein and reveal a fundamental role of the NS4A TM domain in coordinating HCV RNA replication and virus particle assembly.  相似文献   

4.
5.
A型流感病毒NS1蛋白羧基端4个氨基酸可以与PDZ结构域(the domain of PSD95,Dig and ZO-1)相结合,称为PL结构域(PDZ ligand domain).对不同亚型或毒株的流感病毒而言,其NS1蛋白PL结构域的组成存在比较大的差异.有研究发现这种差异能够影响NS1与宿主细胞蛋白的相互作用进而影响病毒的致病力.为进一步探讨PL结构域对NS1蛋白生物学特性的影响,首先构建出4种不同亚型流感病毒(H1N1、H3N2、H5N1、H9N2)来源的NS1绿色荧光蛋白表达质粒.在此基础上,对野生型H3N2病毒NS1表达质粒进行人工改造,将其PL结构域缺失或者替换为其他亚型流感病毒的PL结构域,制备出4种重组NS1蛋白表达质粒.通过比较上述不同NS1蛋白在HeLa细胞中的定位情况发现,只有野生型H3N2病毒的NS1蛋白可以定位于核仁当中,而野生型H1N1、H5N1、H9N2病毒的NS1蛋白以及PL结构域缺失或替代的H3N2病毒NS1蛋白都不能定位于核仁.而通过比较上述NS1蛋白在流感病毒易感的MDCK细胞中的定位,进一步发现所有这些蛋白均不定位于核仁.上述结果表明:PL结构域的不同可以明显影响NS1蛋白在HeLa细胞核内的定位和分布,这有可能造成其生物学功能的差异.同时,NS1蛋白在细胞核内的定位还与宿主细胞的来源有着密切关系.  相似文献   

6.
Highly pathogenic H5N1 influenza A viruses have spread across Asia, Europe, and Africa. More than 500 cases of H5N1 virus infection in humans, with a high lethality rate, have been reported. To understand the molecular basis for the high virulence of H5N1 viruses in mammals, we tested the virulence in ferrets of several H5N1 viruses isolated from humans and found A/Vietnam/UT3062/04 (UT3062) to be the most virulent and A/Vietnam/UT3028/03 (UT3028) to be avirulent in this animal model. We then generated a series of reassortant viruses between the two viruses and assessed their virulence in ferrets. All of the viruses that possessed both the UT3062 hemagglutinin (HA) and nonstructural protein (NS) genes were highly virulent. By contrast, all those possessing the UT3028 HA or NS genes were attenuated in ferrets. These results demonstrate that the HA and NS genes are responsible for the difference in virulence in ferrets between the two viruses. Amino acid differences were identified at position 134 of HA, at positions 200 and 205 of NS1, and at positions 47 and 51 of NS2. We found that the residue at position 134 of HA alters the receptor-binding property of the virus, as measured by viral elution from erythrocytes. Further, both of the residues at positions 200 and 205 of NS1 contributed to enhanced type I interferon (IFN) antagonistic activity. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.  相似文献   

7.
NS1 Protein of Influenza A Virus Down-Regulates Apoptosis   总被引:21,自引:0,他引:21       下载免费PDF全文
Wild-type (WT) influenza A/PR/8/34 virus and its variant lacking the NS1 gene (delNS1) have been compared for their ability to mediate apoptosis in cultured cells and chicken embryos. Cell morphology, fragmentation of chromatin DNA, and caspase-dependent cleavage of the viral NP protein have been used as markers for apoptosis. Another marker was caspase cleavage of the viral M2 protein, which was also found to occur in an apoptosis-specific manner. In interferon (IFN)-competent host systems, such as MDCK cells, chicken fibroblasts, and 7-day-old chicken embryos, delNS1 virus induced apoptosis more rapidly and more efficiently than WT virus. As a consequence, delNS1 virus was also more lethal for chicken embryos than WT virus. In IFN-deficient Vero cells, however, apoptosis was delayed and developed with similar intensity after infection with both viruses. Taken together, these data indicate that the IFN antagonistic NS1 protein of influenza A viruses has IFN-dependent antiapoptotic potential.  相似文献   

8.
9.
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.  相似文献   

10.
Methamphetamine (meth) is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1) virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth’s effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents.  相似文献   

11.
《Cell host & microbe》2014,15(4):484-493
  1. Download : Download high-res image (128KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
华南流感病毒NS1基因特性研究   总被引:7,自引:0,他引:7  
为了解H9N2和H5N1亚型流行性感冒病毒株的NS1基因特性,采用RT-PCR方法测定了12株2000~2003年间在华南地区分离的禽流感病毒株的NS1基因核苷酸序列. 测序显示6株H9N2亚型流感病毒NS1基因开放阅读框(ORF)长654 bp,编码217个氨基酸. 6株H5N1亚型毒株NS1基因ORF长678 bp,编码225个氨基酸. 核苷酸和氨基酸同源性分析表明,同一亚型分离株之间有很高的同源性,而不同亚型的H9N2和H5N1毒株之间存在较大差异. BLAST分析表明,H5N1和H9N2亚型流感病毒分离株的NS1基因分别与近两年从香港特区和华南地区的鸭中分离的毒株A/Duck/Hong Kong/646.3/01 (H5N1)、A/Duck/Shantou/2143/01 (H9N2)有很高的亲缘关系. 该研究结果为进一步进行NS1功能研究奠定了基础.  相似文献   

14.
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.  相似文献   

15.
16.
Ren  Lehao  Zhang  Wanju  Zhang  Jing  Zhang  Jiaxiang  Zhang  Huiying  Zhu  Yong  Meng  Xiaoxiao  Yi  Zhigang  Wang  Ruilan 《中国病毒学》2021,36(6):1532-1542
Virologica Sinica - Viruses depend on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. In this study, we observed that influenza A...  相似文献   

17.
禽流感病毒NS1蛋白对细胞的影响   总被引:1,自引:0,他引:1  
NS1蛋白为流感病毒非结构蛋白,只在病毒侵入宿主细胞后产生.目前NS1蛋白对细胞整体水平上的作用仍不清楚,为了解NS1蛋白在病毒感染细胞中的作用,构建了重组质粒pCMV-myc-NS1并将其转染A549细胞,利用双向电泳技术检测了受NS1蛋白调控的宿主蛋白,以期从蛋白质组水平上研究禽流感病毒与宿主细胞间的相互作用.同时,还检测了转染NS1对细胞增殖和细胞周期的影响.结果显示,NS1在细胞中的表达,能够明显引起宿主细胞代谢的变化,并通过阻滞细胞周期的正常进行而减缓细胞的增殖.  相似文献   

18.
Although an effective interferon antagonist in human and avian cells, the novel H7N9 influenza virus NS1 protein is defective at inhibiting CPSF30. An I106M substitution in H7N9 NS1 can restore CPSF30 binding together with the ability to block host gene expression. Furthermore, a recombinant virus expressing H7N9 NS1-I106M replicates to higher titers in vivo, and is subtly more virulent, than the parental virus. Natural polymorphisms in H7N9 NS1 that enhance CPSF30 binding may be cause for concern.  相似文献   

19.
20.
The acquisition of temperature-mutant (ts) defects in a strain of influenza virus has been shown in mice to be associated with diminished virulence, though the antibody-producing stimulus remained. It is suggested that three advantages may make ts strains potential sources of attenuated live influenza vaccine—the ease of obtaining the strains, the ease of testing the vaccine strain, and the high yield of vaccine doses from a single egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号