首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

3.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

4.
5.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

6.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

7.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.Adiponectin secreted by the adipose tissue1, 2 exists in either a full-length or globular form.3, 4, 5, 6 Adiponectin can cross the blood–brain barrier, and various forms of adiponectin are found in the cerebrospinal fluid.7, 8, 9, 10, 11 Adiponectin exerts its effect by binding to the adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2)12, 13 that have different affinities for the various circulating adiponectins.12, 14, 15, 16, 17 Several studies reported that both receptor subtypes are expressed in the central nervous system (CNS).7, 12, 18 As adiponectin modulates insulin sensitivity and inflammation,19 its deficiency induces insulin resistance and glucose intolerance in animals fed a high-fat diet (HFD).19, 20, 21 In addition, adiponectin can ameliorate the glucose homeostasis and increase insulin sensitivity.22, 23, 24 Adiponectin, which is the most well-known adipokine, acts mainly as an anti-inflammatory regulator,25, 26 and is associated with the onset of neurological disorders.27 In addition, a recent study reported that adiponectin promotes the proliferation of hippocampal neural stem cells (NSCs).28 Considering that adiponectin acts by binding to the adiponectin receptors, investigation of the adiponectin receptor-mediated signaling in the brain is crucial to understand the cerebral effects of adiponectin and the underlying cellular mechanisms.The prevalence of type II diabetes mellitus (DM2) and Alzheimer''s disease increases with aging.29 According to a cross-sectional study, in people with DM2, the risk of dementia is 2.5 times higher than that in the normal population.30, 31 A study performed between 1980 and 2002 suggested that an elevated blood glucose level is associated with a greater risk for dementia in elderly patients with DM2.32 In addition, according to a 9-year-long longitudinal cohort study, the risk of developing Alzheimer''s disease was 65% higher in people with diabetes than in control subjects.33 A community-based cohort study also reported that higher plasma glucose concentrations are associated with an increased risk for dementia, because the higher glucose level has detrimental effects on the brain.31 High blood glucose level causes mitochondria-dependent apoptosis,34, 35, 36 and aggravates diverse neurological functions.37, 38 Inflammation and oxidative stress, which are commonly observed in people with diabetes, inhibit neurogenesis.39, 40, 41 Similarly, neurogenesis is decreased in mice and rats with genetically induced type I diabetes.42, 43 In addition, diabetic rodents have a decreased proliferation rate of neural progenitors.43, 44 Furthermore, several studies suggested that an HFD leads to neuroinflammation, the impairment of synaptic plasticity, and cognitive decline.45, 46Here, we investigated whether AdipoR1-mediated signaling is associated with cell death in the brain of mice on a HFD, and whether high glucose level modifies the proliferation and differentiation capacity of NSCs in vitro. Our study provides novel findings about the role of AdipoR1-mediated signaling in hyperglycemia-induced neuropathogenesis.  相似文献   

8.
9.
10.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

11.
Retinoic acid is a widely used factor in both mouse and human embryonic stem cells. It suppresses differentiation to mesoderm and enhances differentiation to ectoderm. Fibroblast growth factor 2 (FGF2) is widely used to induce differentiation to neurons in mice, yet in primates, including humans, it maintains embryonic stem cells in the undifferentiated state. In this study, we established an FGF2 low-dose-dependent embryonic stem cell line from cynomolgus monkeys and then analyzed neural differentiation in cultures supplemented with retinoic acid and FGF2. When only retinoic acid was added to culture, neurons differentiated from FGF2 low-dose-dependent embryonic stem cells. When both retinoic acid and FGF2 were added, neurons and astrocytes differentiated from the same embryonic stem cell line. Thus, retinoic acid promotes the differentiation from embryonic stem cells to neuroectoderm. Although FGF2 seems to promote self-renewal in stem cells, its effects on the differentiation of stem cells are influenced by the presence or absence of supplemental retinoic acid.Abbreviations: EB, embryoid body; ES, embryonic stem; ESM, embryonic stem cell medium; FGF, fibroblast growth factor; GFAP, glial fibrillary acidic protein; LIF, leukemia inhibitory factor; MBP, myelin basic protein; RA, retinoic acid; SSEA, stage-specific embryonic antigen; TRA, tumor-related antigenPluripotent stem cells are potential sources of material for cell replacement therapy and are useful experimental tools for in vitro models of human disease and drug screening. Embryonic stem (ES) cells are capable of extensive proliferation and multilineage differentiation, and thus ES-derived cells are suitable for use in cell-replacement therapies.18,23 Reported ES cell characteristics including tumorigenic potential, DNA methylation status, expression of imprinted genes, and chromatin structure were elucidated by using induced pluripotent stem cells.2,11,17 Because the social expectations of regeneration medicine are growing, we must perform basic research with ES cells, which differ from induced pluripotent stem cells in terms of origin, differentiation ability, and epigenetic status.2,8Several advances in research have been made by using mouse ES cells. Furthermore, primate ES cell lines have been established from rhesus monkeys (Macaca mulatta),24 common marmosets (Callithrix jacchus),25 cynomolgus monkeys (M. fascicularis),20 and African green monkeys (Chlorocebus aethiops).19 Mouse and other mammalian ES cells differ markedly in their responses to the signaling pathways that support self-renewal.8,28 Mouse ES cells require leukemia inhibitory factor (LIF)–STAT3 signaling.14 In contrast, primate ES cells do not respond to LIF. Fibroblast growth factor 2 (FGF2) appears to be the most upstream self-renewal factor in primate ES cells. FGF2 also exerts its effects through indirect mechanisms, such as the TGFβ–Activin–Nodal signaling pathway, in primate ES cells.21 In addition to the biologic similarities between monkeys and humans, ES cells derived from cynomolgus monkeys or human blastocysts have extensive similarities that are not apparent in mouse ES cells.8,14,21,28 Numerous monkey ES cell lines are now available, and cynomolgus monkeys are an efficient model for developing strategies to investigate the efficacy of ES-cell–based medical treatments in humans.Several growth factors and chemical compounds, including retinoic acid (RA),4,9,13,22,26 FGF2,9,10,16,22 epidermal growth factor,9,22 SB431542,1,4,10 dorsomorphin,10,27 sonic hedgehog,12,13,16,27,29 and noggin,1,4,9,27 are essential for the differentiation and proliferation or maintenance of neural stem cells derived from primate ES cells. Of these factors, active RA signaling suppresses a mesodermal fate by inhibiting Wnt and Nodal signaling pathways during in vitro culture and leads to neuroectoderm differentiation in ES cells.4,13,26 RA is an indispensable factor for the specialization to neural cells. FGF2 is important during nervous system development,12 and FGF2 and RA both are believed to influence the differentiation to neural cells. The current study was done to clarify the mechanism of RA and FGF2 in the induction of differentiation along the neural lineage.We recently established a monkey ES cell line that does not need FGF2 supplementation for maintenance of the undifferentiated state. This ES cell line allowed us to study the role of differentiation to neural cells with RA and enabled us to compare ES cell differentiation in the context of supplementation with RA or FGF2 in culture. To this end, we established a novel cynomolgus monkey cell line derived from ES cells and maintained it in an undifferentiated state in the absence of FGF2 supplementation.  相似文献   

12.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

13.
Neutral sphingomyelinase (nSMase) activation in response to environmental stress or inflammatory cytokine stimuli generates the second messenger ceramide, which mediates the stress-induced apoptosis. However, the signaling pathways and activation mechanism underlying this process have yet to be elucidated. Here we show that the phosphorylation of nSMase1 (sphingomyelin phosphodiesterase 2, SMPD2) by c-Jun N-terminal kinase (JNK) signaling stimulates ceramide generation and apoptosis and provide evidence for a signaling mechanism that integrates stress- and cytokine-activated apoptosis in vertebrate cells. An nSMase1 was identified as a JNK substrate, and the phosphorylation site responsible for its effects on stress and cytokine induction was Ser-270. In zebrafish cells, the substitution of Ser-270 for alanine blocked the phosphorylation and activation of nSMase1, whereas the substitution of Ser-270 for negatively charged glutamic acid mimicked the effect of phosphorylation. The JNK inhibitor SP600125 blocked the phosphorylation and activation of nSMase1, which in turn blocked ceramide signaling and apoptosis. A variety of stress conditions, including heat shock, UV exposure, hydrogen peroxide treatment, and anti-Fas antibody stimulation, led to the phosphorylation of nSMase1, activated nSMase1, and induced ceramide generation and apoptosis in zebrafish embryonic ZE and human Jurkat T cells. In addition, the depletion of MAPK8/9 or SMPD2 by RNAi knockdown decreased ceramide generation and stress- and cytokine-induced apoptosis in Jurkat cells. Therefore the phosphorylation of nSMase1 is a pivotal step in JNK signaling, which leads to ceramide generation and apoptosis under stress conditions and in response to cytokine stimulation. nSMase1 has a common central role in ceramide signaling during the stress and cytokine responses and apoptosis.The sphingomyelin pathway is initiated by the hydrolysis of sphingomyelin to generate the second messenger ceramide.1 Sphingomyelin hydrolysis is a major pathway for stress-induced ceramide generation. Neutral sphingomyelinase (nSMase) is activated by a variety of environmental stress conditions, such as heat shock,1, 2, 3 oxidative stress (hydrogen peroxide (H2O2), oxidized lipoproteins),1 ultraviolet (UV) radiation,1 chemotherapeutic agents,4 and β-amyloid peptides.5, 6 Cytokines, including tumor necrosis factor (TNF)-α,7, 8, 9 interleukin (IL)-1β,10 Fas ligand,11 and their associated proteins, also trigger the activation of nSMase.12 Membrane-bound Mg2+-dependent nSMase is considered to be a strong candidate for mediating the effects of stress and inflammatory cytokines on ceramide.3Among the four vertebrate nSMases, nSMase1 (SMPD2) was the first to be cloned and is localized in the endoplasmic reticulum (ER) and Golgi apparatus.13 Several studies have focused on the potential signaling roles of nSMase1, and some reports have suggested that nSMase1 is important for ceramide generation in response to stress.5, 6, 14, 15 In addition, nSMase1 is responsible for heat-induced apoptosis in zebrafish embryonic cultured (ZE) cells, and a loss-of-function study showed a reduction in ceramide generation, caspase-3 activation, and apoptosis in zebrafish embryos.16 However, nSMase1-knockout mice showed no lipid storage diseases or abnormalities in sphingomyelin metabolism.17 Therefore, the molecular mechanisms by which nSMase1 is activated have yet to be elucidated.Environmental stress and inflammatory cytokines1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 stimulate stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) signaling, which involves the sequential activation of members of the mitogen-activated protein kinase (MAPK) family, including MAPK/ERK kinase kinase (MEKK)1/MAPK kinase (MKK)4, and/or SAPK/ERK kinase (SEK)1/MKK7, JNK, and c-jun. Both the JNK and sphingomyelin signaling pathways coordinately mediate the induction of apoptosis.1 However, possible crosstalk between the JNK and sphingomyelin signaling pathways has not yet been characterized. Previously, we used SDS-PAGE to determine that nSMase1 polypeptides migrated at higher molecular masses,16 suggesting that the sphingomyelin signaling pathway might cause the production of a chemically modified phosphorylated nSMase1, which is stimulated under stressed conditions in ZE cells.16 Here, we demonstrate that JNK signaling results in the phosphorylation of Ser-270 of nSMase1, which initiates ceramide generation and apoptosis. We also provide evidence for a signaling mechanism that integrates cytokine- and stress-activated apoptosis in vertebrate cells. We studied stress-induced ceramide generation in two cell types: ZE cells and human leukemia Jurkat T-lymphoid cells. Stress-induced apoptosis has been investigated in these systems previously.16, 28  相似文献   

14.
Tumor heterogeneity is in part determined by the existence of cancer stem cells (CSCs) and more differentiated tumor cells. CSCs are considered to be the tumorigenic root of cancers and suggested to be chemotherapy resistant. Here we exploited an assay that allowed us to measure chemotherapy-induced cell death in CSCs and differentiated tumor cells simultaneously. This confirmed that CSCs are selectively resistant to conventional chemotherapy, which we revealed is determined by decreased mitochondrial priming. In agreement, lowering the anti-apoptotic threshold using ABT-737 and WEHI-539 was sufficient to enhance chemotherapy efficacy, whereas ABT-199 failed to sensitize CSCs. Our data therefore point to a crucial role of BCLXL in protecting CSCs from chemotherapy and suggest that BH3 mimetics, in combination with chemotherapy, can be an efficient way to target chemotherapy-resistant CSCs.Colorectal cancer is the third most common cancer worldwide.1, 2 Patients with advanced stage colorectal cancer are routinely treated with 5-fluorouracil (5-FU), leucovorin and oxaliplatin (FOLFOX), or with 5-FU, leucovorin and irinotecan (FOLFIRI), often in combination with targeted agents such as anti-VEGF or anti-EGFR at metastatic disease.3, 4, 5, 6 Despite this intensive treatment, therapy is still insufficiently effective and chemotherapy resistance occurs frequently. Although still speculative, it has been suggested that unequal sensitivity to chemotherapy is due to an intratumoral heterogeneity that is orchestrated by cancer stem cells (CSCs) that can self-renew and give rise to more differentiated progeny.7, 8 When isolated from patients, CSCs efficiently form tumors upon xenotransplantation into mice which resemble the primary tumor from which they originated.9, 10, 11 In addition, many xenotransplantation studies have emphasized the importance of CSCs for tumor growth.9, 10, 11, 12 Colon CSCs were originally isolated from primary human colorectal tumor specimens using CD133 as cell surface marker and shown to be highly tumorigenic when compared with the non-CSCs population within a tumor.9, 10 Later, other cell surface markers as well as the activity of the Wnt pathway have been used to isolate colon CSCs from tumors.12, 13 Spheroid cultures have been established from human primary colorectal tumors that selectively enrich for the growth of colon CSCs,11, 12 although it is important to realize that these spheres also contain more differentiated tumor cells.12 In agreement, we have shown that the Wnt activity reporter that directs the expression of enhanced green fluorescent protein (TOP-GFP) allows for the separation of CSCs from more differentiated progeny in the spheroid cultures.12CSCs are suggested to be responsible for tumor recurrence after initial therapy, as they are considered to be selectively resistant to therapy.11, 14 Conventional chemotherapy induces, among others, DNA damage and subsequent activation of the mitochondrial cell death pathway, which is regulated by a balance between pro- and anti-apoptotic BCL2 family members.15 Upon activation of apoptosis, pro-apoptotic BH3 molecules are activated and these may perturb the balance in favor of apoptosis initiated by mitochondrial outer membrane polarization (MOMP), release of cytochrome c and subsequent activation of a caspase cascade.The apoptotic balance of cancer cells can be measured with the use of a functional assay called BH3 profiling.16 BH3 profiling is a method to determine the apoptotic ‘priming'' level of a cell by exposing mitochondria to standardized amounts of roughly 20-mer peptides derived from the alpha-helical BH3 domains of BH3-only proteins and determining the rate of mitochondrial depolarization. Using this approach, priming was measured in various cancers and compared with normal tissues.17, 18 In all cancer types tested, the mitochondrial priming correlated well with the observed clinical response to chemotherapy. That is, cancers that are highly primed are more chemosensitive, whereas chemoresistant tumor cells and normal tissues are poorly primed.17, 18 This suggests that increasing mitochondrial priming can potentially increase chemosensitivity, which can be achieved by directly inhibiting the anti-apoptotic BCL2 family members.18 To this end, small-molecule inhibitors, so-called BH3 mimetics, have been developed. ABT-737 and the highly related ABT-263 both inhibit BCL2, BCLXL and BCLW19, 20, 21 and were shown to be effective in killing cancer cells in vitro and in vivo21 with a preference for BCL2.19, 22 As BCL2 protein expression is often upregulated in hematopoietic cancers, it represents a promising target, which was supported by high efficacy of these BH3 mimetics in animal experiments.21 However, in vivo efficacy is limited due to thrombocytopenia, which relates to a dependence of platelets on BCLXL for survival.23, 24 To overcome this toxicity, a BCL2-specific compound, ABT-199, was developed.25 Souers et al.25 showed that inhibition of BCL2 using ABT-199 blocks tumor growth of acute lymphoblastic leukemia cells in xenografts. In addition to the single compound effects of ABT-199, combination with rituximab inhibited growth of non-Hodgkin''s lymphoma, mantle cell lymphoma and acute lymphoblastic leukemia tumor cells growth in vivo.25 Moreover, highly effective tumor lysis was observed in all three patients with chronic lymphocytic leukemia that were treated with ABT-199.25 More recently, a BCLXL-specific compound, WEHI-539, was discovered using high-throughput chemical screening.26As the apoptotic balance appears a useful target for the treatment of cancers and CSCs have been suggested to resist therapy selectively, we set out to analyze whether specifically colon CSCs are resistant to therapy and whether this is due to an enhanced anti-apoptotic threshold, specific to CSCs. To study chemosensitivity, we developed a robust single cell-based analysis in which we can measure apoptosis simultaneously in CSCs and their differentiated progeny. Utilizing this system we showed that colon CSCs and not their differentiated progeny are resistant to chemotherapeutic compounds and that this was due to the fact that these cells are less primed to mitochondrial death. Furthermore, inhibition of anti-apoptotic BCLXL molecule with either ABT-737 or WEHI-539, but not ABT-199, breaks this resistance and sensitizes the CSCs to chemotherapy.  相似文献   

15.
Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity.Obesity, a medical condition predisposing to diabetes, cardiovascular diseases, cancer, and complicating other life-threatening diseases, is becoming an increasingly important social problem.1, 2, 3 Development of pharmacological approaches to reduction of body fat has remained a daunting task.4 Approved obesity treatments typically produce only moderate and temporary effects.2,5 White adipocytes are the differentiated cells of white adipose tissue (WAT) that store triglycerides in lipid droplets.6,7 In contrast, adipocytes of brown adipose tissue (BAT) dissipate excess energy through adaptive thermogenesis. Under certain conditions, white adipocytes can become partially replaced with brown-like ‘beige'' (‘brite'') adipocytes that simulate the thermogenic function of BAT adipocytes.7,8 Obesity develops in the context of positive energy balance as a result of hypertrophy and hyperplasia of white adipocytes.9Expansion and renewal of the white adipocyte pool in WAT continues in adulthood.10,11 This process is believed to rely on proliferation and self-renewal of mesenchymal precursor cells12 that we term white adipocyte progenitors (WAPs). WAPs reside within the population of adipose stromal cells (ASCs)13 and are functionally similar to bone marrow mesenchymal stem cells (MSCs).14, 15, 16 ASCs can be isolated from the stromal/vascular fraction (SVF) of WAT based on negativity for hematopoietic (CD45) and endothelial (CD31) markers.17,18 ASCs support vascularization as mural/adventitial cells secreting angiogenic factors5,19 and, unlike bone marrow MSCs, express CD34.19,20 WAPs have been identified within the ASC population based on expression of mesenchymal markers, such as platelet-derived growth factor receptor-β (PDGFRβ, aka CD140b) and pericyte markers.17,18 Recently, a distinct ASC progenitor population capable of differentiating into both white and brown adipocytes has been identified in WAT based on PDGFRα (CD140a) expression and lack of PDGFRβ expression.21,22 The physiological relevance of the two precursor populations residing in WAT has not been explored.We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest.23, 24, 25, 26, 27 Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer'' peptides28 composed of a cell-homing domain binding to a surface marker and of KLAKLAK2 (sequence KLAKLAKKLAKLAK), a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group.26,29 Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.26,30,31 Recently, we isolated a cyclic peptide WAT7 (amino acid sequence CSWKYWFGEC) based on its specific binding to ASCs.20 We identified Δ-decorin (ΔDCN), a proteolytic cleavage fragment of decorin, as the WAT7 receptor specifically expressed on the surface of CD34+PDGFRβ+CD31-CD45- WAPs and absent on MSCs in other organs.20Here, we investigated whether WAPs are required for obesity development in adulthood. By designing a new hunter-killer peptide that directs KLAKLAK2 to WAPs through WAT7/ΔDCN interaction, we depleted WAP in the mouse diet-induced obesity model. We demonstrate that WAP depletion suppresses WAT growth. We show that, in response to WAP deficiency, WAT becomes populated with beige adipocytes. Consistent with the reported thermogenic function of beige adipocytes,32,33 the observed WAT remodeling is associated with increased energy expenditure. We identify a population of PDGFRα-positive, PDGFRβ-negative ASCs reported recently22 as a population surviving WAP depletion and responsible for WAT browning.  相似文献   

16.
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.Interstitial fibrosis is common to many cardiovascular disease etiologies including myocardial infarction (MI),1 diabetic cardiomyopathy2 and hypertension.3 Fibrosis may arise due to maladaptive cardiac remodeling following injury and is a complex process resulting from activation of signaling pathways, such as TGF-β1.4 TGF-β1 signaling has broad-ranging effects that may affect cell growth, differentiation and the production of extracellular matrix (ECM) proteins.5, 6 Elevated TGF-β1 is observed in post-MI rat heart7 and is associated with fibroblast-to-myofibroblast phenoconversion and concomitant activation of canonical Smad signaling.8 The result is a proliferation of myofibroblasts, which then leads to inappropriate deposition of fibrillar collagens, impaired cardiac function and, ultimately, heart failure.9, 10Autophagy is necessary for cellular homeostasis and is involved in organelle and protein turnover.11, 12, 13, 14 Autophagy aids in cell survival by providing primary materials, for example, amino acids and fatty acids for anabolic pathways during starvation conditions.15, 16 Alternatively, autophagy may be associated with apoptosis through autodigestive cellular processes, cellular infection with pathogens or extracellular stimuli.17, 18, 19, 20 The overall control of cardiac fibrosis is likely due to the complex functioning of an array of regulatory factors, but to date, there is little evidence linking autophagy with fibrogenesis in cardiac tissue.11, 12, 13, 14, 15, 16, 17, 18, 21, 22Recent studies have demonstrated that TGF-β1 may not only promote autophagy in mouse fibroblasts and human tubular epithelial kidney cells15, 23, 24 but can also inhibit this process in fibroblasts extracted from human patients with idiopathic pulmonary fibrosis.25 Moreover, it has recently been reported that autophagy can negatively15 and positively25, 26, 27 regulate the fibrotic process in different model cell systems. In this study, we have explored the putative link between autophagy and TGF-β1-induced fibrogenesis in human atrial myofibroblasts (hATMyofbs) and in a model of MI rat heart.  相似文献   

17.
Spontaneous neoplasms in Mongolian gerbils have an incidence of 20% to 26.8%, but osteosarcomas occur at a much lower rate. Here we report a 1-y-old Mongolian gerbil with a spontaneous osteosarcoma at the level of the proximal tibia, with metastases to the pectoral muscles and lungs. Grossly, the tibial mass obliterated the tibia and adjacent muscles, and an axillary mass with a bloody, cavitary center expanded the pectoral muscles. Microscopically, the tibial mass was an infiltrative, osteoblastic mesenchymal neoplasm, and the axillary mass was an anaplastic mesenchymal neoplasm with hemorrhage. The lung contained multiple metastatic foci. Immunohistochemistry for osteonectin was strongly positive in the tibial, axillary, and pulmonary metastases. Although osteosarcoma is the most common primary malignant bone neoplasm that occurs spontaneously in all laboratory and domestic animal species and humans, it arises less frequently than does other neoplasms. The current case of spontaneous osteoblastic osteosarcoma of the proximal tibia and metastases to the pectoral muscles and lung in a Mongolian gerbil is similar in presentation, histology, and predilection site of both osteoblastic and telangiectatic osteosarcomas in humans. In addition, this case is an unusual manifestation of osteosarcoma in the appendicular skeleton of a Mongolian gerbil.Mongolian gerbils are used frequently in biologic research,1,2,4,9,10,12-14 particularly in oncogenic studies and filariasis research studying Brugia malayi.2 There have been several reports1,6,10,11,13-15 of spontaneous neoplasms, particularly in gerbils 2 y of age and older, typically occurring with the highest incidences in the skin, reproductive tract, and adrenal glands; however, neoplasms have also been reported in the thyroid, thymus, liver, kidney, pancreas, and bone.1,6,10,11,13-15 The incidence of spontaneous neoplasms occurring in the subfamily Gerbillinae ranges from 20% to 26.8%,1,6,10,11,13-15 depending on the study, age, and sex of the animals.With a lower incidence than those reported for other neoplasms, osteosarcomas in gerbils have been described in the ramus of the mandible and as an extraskeletal mass throughout the peritoneum.10,11 The usual age of onset for osteosarcomas in Mongolian gerbils is approximately 3 y (36 to 39 mo); however, no tumor type has been reported at less than 2 y of age in this species.10,11 Here we report a spontaneous osteosarcoma that occurred at the level of the proximal tibia, with metastases to the pectoral muscles and lung, in a 1-y-old Mongolian gerbil.  相似文献   

18.
Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.Astrocyte reactivity (reactive gliosis) is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remains poorly understood. In the healthy central nervous system (CNS), astrocytes coordinate homeostatic vascular perfusion, free radical detoxification and neurotransmitter recycling.1, 2 Injury or stress induces a phenotypic switch, whose cardinal features are cellular hypertrophy and increased expression and polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein (GFAP).3, 4, 5 The role of intermediate filaments in reactive gliosis remains unclear.3, 6, 7, 8, 9 Genetic deletion of IFs GFAP and vimentin have been shown to promote axonal outgrowth and regeneration in developing neurons and models of CNS injury,10, 11, 12 yet result in developmental defects to inner retinal function13 and increased damage in models of Alzheimer''s disease.14 Genetically, GFAP gain of function mutations associated with Alexander''s disease induce a p38 mitogen-activated protein kinase (MAPK)-dependent pathology.15 However, no pharmacologic tools have been available to specifically modulate and explore this reactive switch in the context of pathological CNS injury. Consequently, strategies to therapeutically target the reactive switch have remain challenging to explore.Withaferin A (WFA) is a small molecule withanolide that is a potent and specific inhibitor of type III intermediate filament dynamics.16, 17, 18 Its activity has been most closely studied with respect to vimentin rearrangement and phosphorylation in the context of angiogenesis, fibrosis and cancer, through downstream effects on inflammatory signaling and cell proliferation.19, 20, 21, 22, 23, 24 Interestingly, WFA has been reported to regulate vimentin-mediated activation of MAPKs in a context dependent manner, as well as NFκB.25, 26 Recently Bargagna-Mohan et al.27 reported that, in addition to vimentin, WFA also binds covalently to GFAP at cysteine 294. In these studies WFA impaired GFAP filament assembly and polymerization in cultured astrocytes, and in vivo in retinal astrocytes and related Müller glia in a model of injury-induced gliosis.27 Therefore, WFA presents a novel tool to test the pharmacologic blockade of intermediate filament remodeling during gliosis. However, the consequences of WFA disruption of IFs on neuronal damage has not been studied.We have previously used the retina as a uniquely accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal survival.28, 29, 30 In the human and rodent eye retinal ganglion cells (RGCs) and amacrine cells of the inner retina maintain a delicate homeostatic balance and are particularly vulnerable to excitotoxic and metabolic damage, mediated in part through non-cell autonomous interactions with neighboring glia.31, 32, 33, 34 In addition, our work and others has implicated signaling through p38 MAPKs as key regulators of glutamate recycling, antioxidant activity, and cytokine secretion in neighboring stress-activated retinal astrocytes and Müller glia.29, 35, 36, 37 Here we take advantage of a model of induced retinal astrocyte reactivity to establish whether WFA, and the selective p38 MAPK inhibitor SB203580 (SB), affect neuronal apoptosis in a mouse model of excitotoxic injury.  相似文献   

19.
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization.Many diseases, including rheumatoid arthritis, pulmonary fibrosis, adult respiratory distress syndrome, and inflammatory bowel disease,1, 2, 3, 4 are commonly marked by impaired resolution of inflammation that is linked to defects in the phagocytic clearance of apoptotic cells.5, 6, 7 Apoptotic cell (AC) clearance normally eliminates a plethora of pro-inflammatory stimuli,8, 9 and the recognition of ACs by phagocytes10 limits progression to necrosis,11 suppresses pro-inflammatory mediator production, and induces IL-10 and TGF-β release.12, 13 As defective clearance of ACs is associated with the development of inflammatory disease and autoimmunity,14, 15 new therapeutic approaches designed to increase the capacity of phagocytes to remove ACs could effectively promote the resolution of inflammation.Phagocytosis of ACs can be regulated by soluble mediators, including cytokines,16, 17 prostaglandins and lipoxins,17, 18, 19 serum proteins,20 agonists of Liver X receptors (LXRs),17, 21 and glucocorticoids (GC).17, 22 In particular, LXR agonists and GCs promote phagocytosis of ACs predominantly via a Tyro3/Axl/Mer (TAM) receptor tyrosine kinase (RTK)-dependent pathway.17, 21, 23 There are two established ligands for the TAM RTKs, Protein S (gene name Pros1), which activates Tyro3 and Mer, and Gas6, which activates all three TAMs,24, 25 although other ligands have been suggested.26, 27 The amino terminal Gla domains of Protein S and Gas6 bind to phosphatidylserine (PtdSer) on the plasma membrane of ACs,28 a potent ‘eat-me'' signal by which ACs are recognized by phagocytes.29 TAM receptors bind to the carboxy terminal domains of Protein S and Gas6, which effectively act as molecular ‘bridges'' between PtdSer on the AC and TAM receptors on the phagocyte.17, 30, 31 TAM receptor- and ligand-deficient mice exhibit defective phagocytic pruning of photoreceptor outer segments by retinal pigment epithelial (RPE) cells of the eye,32, 33, 34 defective clearance of apoptotic germ cells by Sertoli cells of the testis,35 and defective clearance of ACs by macrophages/dendritic cells in lymphoid organs.36 These phenotypes are also detectable in Mer (gene name Mertk) single knockouts.37 In addition to phagocytic clearance, TAM signaling also has a pivotal role in controlling the innate immune response to pathogenic stimuli.13, 17, 38Although the importance of Mer in the internalization of ACs by macrophages is now well-established, this receptor has been thought not to have a significant role in the initial ‘tethering'' of ACs to the macrophage surface.36, 39 In their studies, Scott et al.36 used peritoneal macrophages for which tethering of ACs has now been shown to be mediated by T-cell immunoglobulin and mucin domain-containing molecule 4 (TIM4).39 Subsequent internalization of tethered ACs is then mediated by either integrin αvβ3- or Mer-mediated signaling.39, 40 Similarly, for RPE cells, the initial capture of photoreceptor outer segments by RPE cells required the integrin αvβ5,41 with Mer-dependent signaling necessary for subsequent internalization. To further probe the mechanistic role of Mer in AC recognition and engulfment, we have now examined macrophages that predominantly use a Mer-dependent AC phagocytosis mechanism.17, 23 We show that in these cells, which do not express TIM4, Mer has the capacity to serve a unique dual role in mediating both tethering of ACs to the macrophage surface as well as subsequent AC engulfment.  相似文献   

20.
Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear.Hearing loss affects more than 360 million people worldwide and is often irreversible.1 Mechanosensory hair cells (HCs), the receptor cells of hearing and balance, are not regenerated in the adult mammal and their death results in permanent hearing loss.2, 3 HCs are surrounded by glia-like supporting cells (SCs) that are necessary for HC survival and function (reviewed in Monzack et al.).4 SCs perform many functions, including providing critical trophic factors, preventing excitotoxicity, and mediating regeneration in those systems (non-mammalian vertebrates) capable of replacing lost HCs.5, 6, 7, 8, 9, 10, 11 When HCs die, SCs also preserve the integrity and function of the remaining tissue by forming scars and clearing dead HCs.2, 12, 13, 14, 15, 16, 17 Maintaining a fluid barrier at the surface of the sensory epithelium after damage is necessary to preserve the electro-chemical gradient that drives HC depolarization and therefore sensory transduction after the onset of hearing (reviewed in Wangemann).18Several major stressors cause HC death,19, 20, 21, 22 including aging, noise trauma, and exposure to therapeutic drugs with ototoxic side effects. When a HC is killed by noise or aminoglycoside antibiotics, surrounding SCs form a filamentous actin (F-actin) cable that constricts the HC at its apex.2, 12, 13, 14, 15, 16, 17 This process separates the apical portion of the cell, including the stereocilia bundle, from the HC body and preserves a sealed reticular lamina.23 In the chick utricle, following the apical constriction of dead HCs, the SCs engulf and phagocytose the remaining HC corpse.15 Additional data from the chick indicate that the ototoxic drug cisplatin impairs some SC functions, including regeneration of HCs or clearance of HC debris.24 We hypothesized that SCs would have significant phagocytic activity in the mature mammalian inner ear, and that cisplatin would impair this activity. To examine these dynamic processes, we live-imaged SC phagocytic activity in the adult mouse utricle and compared the SC responses with HC stress and death caused by aminoglycosides versus cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号