首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=−0.83) and depth (ρ=−0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April–July) and late year (August–Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.  相似文献   

2.
The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure.  相似文献   

3.
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.  相似文献   

4.
The McMurdo Dry Valleys of Antarctica harbor numerous permanently ice-covered lakes, which provide a year-round oasis for microbial life. Microbial eukaryotes in these lakes occupy a variety of trophic levels within the simple aquatic food web ranging from primary producers to tertiary predators. Here, we report the first molecular study to describe the vertical distribution of the eukaryotic community residing in the photic zone of the east lobe (ELB) and west lobe (WLB) of the chemically stratified Lake Bonney. The 18S ribosomal RNA (rRNA) libraries revealed vertically stratified populations dominated by photosynthetic protists, with a cryptophyte dominating shallow populations (ELB–6 m; WLB–10 m), a haptophyte occupying mid-depths (both lobes 13 m) and chlorophytes residing in the deepest layers (ELB–18 and 20 m; WLB–15 and 20 m) of the photic zone. A previously undetected stramenopile occurred throughout the water column of both lobes. Temporal variation in the eukaryotic populations was examined during the transition from Antarctic summer (24-h sunlight) to polar night (complete dark). Protist diversity was similar between the two lobes of Lake Bonney due to exchange between the photic zones of the two basins via a narrow bedrock sill. However, vertical and temporal variation in protist distribution occurred, indicating the influence of the unique water chemistry on the biology of the two dry valley watersheds.  相似文献   

5.
A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time<5 h). We propose a conceptual framework in which physical mixing of the water column periodically resets SAR11 communities to a high diversity state and the seasonal evolution of phosphate limitation competitively excludes deeper-dwelling ecotypes to promote low diversity states dominated (>80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study.  相似文献   

6.
Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=−0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.  相似文献   

7.
Microbial activities that affect global oceanographic and atmospheric processes happen throughout the water column, yet the long-term ecological dynamics of microbes have been studied largely in the euphotic zone and adjacent seasonally mixed depths. We investigated temporal patterns in the community structure of free-living bacteria, by sampling approximately monthly from 5 m, the deep chlorophyll maximum (∼15–40 m), 150, 500 and 890 m, in San Pedro Channel (maximum depth 900 m, hypoxic below ∼500 m), off the coast of Southern California. Community structure and biodiversity (inverse Simpson index) showed seasonal patterns near the surface and bottom of the water column, but not at intermediate depths. Inverse Simpson''s index was highest in the winter in surface waters and in the spring at 890 m, and varied interannually at all depths. Biodiversity appeared to be driven partially by exchange of microbes between depths and was highest when communities were changing slowly over time. Meanwhile, communities from the surface through 500 m varied interannually. After accounting for seasonality, several environmental parameters co-varied with community structure at the surface and 890 m, but not at the intermediate depths. Abundant and seasonally variable groups included, at 890 m, Nitrospina, Flavobacteria and Marine Group A. Seasonality at 890 m is likely driven by variability in sinking particles, which originate in surface waters, pass transiently through the middle water column and accumulate on the seafloor where they alter the chemical environment. Seasonal subeuphotic groups are likely those whose ecology is strongly influenced by these particles. This surface-to-bottom, decade-long, study identifies seasonality and interannual variability not only of overall community structure, but also of numerous taxonomic groups and near-species level operational taxonomic units.  相似文献   

8.
Understanding structure–function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.  相似文献   

9.
We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.  相似文献   

10.
Robust seasonal dynamics in microbial community composition have previously been observed in the English Channel L4 marine observatory. These could be explained either by seasonal changes in the taxa present at the L4 site, or by the continuous modulation of abundance of taxa within a persistent microbial community. To test these competing hypotheses, deep sequencing of 16S rRNA from one randomly selected time point to a depth of 10 729 927 reads was compared with an existing taxonomic survey data covering 6 years. When compared against the 6-year survey of 72 shallow sequenced time points, the deep sequenced time point maintained 95.4% of the combined shallow OTUs. Additionally, on average, 99.75%±0.06 (mean±s.d.) of the operational taxonomic units found in each shallow sequenced sample were also found in the single deep sequenced sample. This suggests that the vast majority of taxa identified in this ecosystem are always present, but just in different proportions that are predictable. Thus observed changes in community composition are actually variations in the relative abundance of taxa, not, as was previously believed, demonstrating extinction and recolonization of taxa in the ecosystem through time.  相似文献   

11.
Anaerobic oxidation of methane (AOM) was investigated in hydrothermal sediments of Guaymas Basin based on δ13C signatures of CH4, dissolved inorganic carbon and porewater concentration profiles of CH4 and sulfate. Cool, warm and hot in-situ temperature regimes (15–20 °C, 30–35 °C and 70–95 °C) were selected from hydrothermal locations in Guaymas Basin to compare AOM geochemistry and 16S ribosomal RNA (rRNA), mcrA and dsrAB genes of the microbial communities. 16S rRNA gene clone libraries from the cool and hot AOM cores yielded similar archaeal types such as Miscellaneous Crenarchaeotal Group, Thermoproteales and anaerobic methane-oxidizing archaea (ANME)-1; some of the ANME-1 archaea formed a separate 16S rRNA lineage that at present seems to be limited to Guaymas Basin. Congruent results were obtained by mcrA gene analysis. The warm AOM core, chemically distinct by lower porewater sulfide concentrations, hosted a different archaeal community dominated by the two deep subsurface archaeal lineages Marine Benthic Group D and Marine Benthic Group B, and by members of the Methanosarcinales including ANME-2 archaea. This distinct composition of the methane-cycling archaeal community in the warm AOM core was confirmed by mcrA gene analysis. Functional genes of sulfate-reducing bacteria and archaea, dsrAB, showed more overlap between all cores, regardless of the core temperature. 16S rRNA gene clone libraries with Euryarchaeota-specific primers detected members of the Archaeoglobus clade in the cool and hot cores. A V6-tag high-throughput sequencing survey generally supported the clone library results while providing high-resolution detail on archaeal and bacterial community structure. These results indicate that AOM and the responsible archaeal communities persist over a wide temperature range.  相似文献   

12.
Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was performed using DNA extracts from water and sediment samples collected from a watershed directly impacted by cattle fecal pollution (WS1) and from a watershed impacted only through runoff (WS2). In WS1, the ruminant-specific Bacteroidales 16S rRNA gene marker CF128F was detected in 65% of the water samples, while the non-16S rRNA gene markers Bac1, Bac2, and Bac5 were found in 32 to 37% of the water samples. In contrast, all source-specific markers were detected in less than 6% of the water samples from WS2. Binary logistic regressions (BLRs) revealed that the occurrence of Bac32F and CF128F was significantly correlated with season as a temporal factor and watershed as a site factor. BLRs also indicated that the dynamics of fecal-source-tracking markers correlated with the density of a traditional fecal indicator (P < 0.001). Overall, our results suggest that a combination of 16S rRNA gene and non-16S rRNA gene markers provides a higher level of confidence for tracking unknown sources of fecal pollution in environmental samples. This study also provided practical insights for implementation of microbial source-tracking practices to determine sources of fecal pollution and the influence of environmental variables on the occurrence of source-specific markers.  相似文献   

13.
Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.  相似文献   

14.
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.  相似文献   

15.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   

16.
17.
Culture and molecular methods were used to describe the planktonic bacterial diversity of an artesian water supply in rural Latah County, Idaho, within the drainage of a small perennial stream, Thorn Creek. The surrounding depth to groundwater at this location is thought to be significant (>100 m), and this transitional zone (basalt-granite) of the Palouse aquifer system is little studied. The water produced by this artesian source is consistent even in years of drought and is of high quality, both mineralogically and microbiologically. A culture-based analysis using 30 media types and four incubation temperatures demonstrated that several metabolic types were present in the water. 16S rRNA gene fragments amplified from the DNA of pooled cultured cells and from the DNA extracted from 1 L of the source water were compared using denaturing gradient gel electrophoresis. The results indicated that the two DNA samples did not have similar 16S rRNA gene compositions and that several uncultured phyla were present in the community DNA sample. These results indicated that large-scale culturing did not accurately represent the structure planktonic community. 16S rRNA gene sequences from 17 different genera were obtained from the community DNA sample; the most abundant were similar to Rhodoferax, Rhodobacter, and Polaromonas species. Sequences related to the Proteo bacteria, Bacteroidetes/Chlorobi, Firmicutes, and Acidobacterium/Fibrobacter divisions were also detected.  相似文献   

18.
To quantify the major environmental drivers of stream bacterial population dynamics, we modelled temporal differences in stream bacterial communities to quantify community shifts, including those relating to cyclical seasonal variation and more sporadic bloom events. We applied Illumina MiSeq 16S rRNA bacterial gene sequencing of 892 stream biofilm samples, collected monthly for 36-months from six streams. The streams were located a maximum of 118 km apart and drained three different catchment types (forest, urban and rural land uses). We identified repeatable seasonal patterns among bacterial taxa, allowing their separation into three ecological groupings, those following linear, bloom/trough and repeated, seasonal trends. Various physicochemical parameters (light, water and air temperature, pH, dissolved oxygen, nutrients) were linked to temporal community changes. Our models indicate that bloom events and seasonal episodes modify biofilm bacterial populations, suggesting that distinct microbial taxa thrive during these events including non-cyanobacterial community members. These models could aid in determining how temporal environmental changes affect community assembly and guide the selection of appropriate statistical models to capture future community responses to environmental change.  相似文献   

19.
Bottom–up selection has an important role in microbial community assembly but is unable to account for all observed variance. Other processes like top–down selection (e.g., predation) may be partially responsible for the unexplained variance. However, top–down processes and their interaction with bottom–up selective pressures often remain unexplored. We utilised an in situ marine biofilm model system to test the effects of bottom–up (i.e., substrate properties) and top–down (i.e., large predator exclusion via 100 µm mesh) selective pressures on community assembly over time (56 days). Prokaryotic and eukaryotic community compositions were monitored using 16 S and 18 S rRNA gene amplicon sequencing. Higher compositional variance was explained by growth substrate in early successional stages, but as biofilms mature, top–down predation becomes progressively more important. Wooden substrates promoted heterotrophic growth, whereas inert substrates’ (i.e., plastic, glass, tile) lack of degradable material selected for autotrophs. Early wood communities contained more mixotrophs and heterotrophs (e.g., the total abundance of Proteobacteria and Euglenozoa was 34% and 41% greater within wood compared to inert substrates). Inert substrates instead showed twice the autotrophic abundance (e.g., cyanobacteria and ochrophyta made up 37% and 10% more of the total abundance within inert substrates than in wood). Late native (non-enclosed) communities were mostly dominated by autotrophs across all substrates, whereas high heterotrophic abundance characterised enclosed communities. Late communities were primarily under top–down control, where large predators successively pruned heterotrophs. Integrating a top–down control increased explainable variance by 7–52%, leading to increased understanding of the underlying ecological processes guiding multitrophic community assembly and successional dynamics.Subject terms: Microbial ecology, Community ecology  相似文献   

20.
Microbial eukaryotic community (0.8–20 μm) composition and its seasonal variation were investigated in large, shallow, subtropical Lake Taihu located in Southeast China. The water samples were collected monthly from August 2006 to July 2007 at two sites distantly located in Meiliang Bay and Lake Center, which differed strongly in their trophic status and sediment resuspension. The microbial eukaryotic community compositions (MECC) were measured using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified eukaryotic 18S rRNA gene fragments. Seasonal variations were related to environmental factors by means of redundancy analysis (RDA) in order to reveal the most important regulating factors. At both sites, the structures and Shannon–Wiener indices of the microbial eukaryotic communities displayed apparent seasonal variations, which were significantly related to environmental variables. There were significant intrahabitat differences in environmental factors regulating MECC, as well as in the seasonal dynamics of the two sites during the study period. At Meiliang Bay, the variations of total phosphorus concentration and cladocera abundance had the most profound impacts on the microbial eukaryotic community composition, while at Lake Center, the total nitrogen concentration and conductivity were most influential. Our results suggest that the DGGE method is a cost-effective way to analyze the seasonal dynamics of MECC and their interaction with environmental variables, which will provide new insights into the diversity and dynamics of MECC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号