首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cytochrome P450 17alpha-hydroxylase (CYP17) gene expression and androgen biosynthesis are persistently elevated in theca cells isolated from ovaries of women with polycystic ovary syndrome (PCOS). We previously reported that -235 to -109 bp of the CYP17 promoter confers increased CYP17 promoter function in PCOS theca cells. In this report, additional deletion and mutational analyses of the CYP17 promoter were performed to identify the sequences that contribute to increased CYP17 promoter function in PCOS theca cells. Results of these analyses established that augmented promoter function in PCOS theca cells results from preferentially increased basal regulation conferred by sequences between -188 and -147 bp of the CYP17 promoter. Scanning mutant analysis demonstrated that mutations within a 16-bp sequence, spanning -174 to -158 bp of the promoter, ablated increased basal CYP17 promoter function in PCOS theca cells. EMSA analysis demonstrated that the NF-1 family member, NF-1C, bound this sequence. Cotransfection of several NF-1C isoforms expressed in normal and PCOS cells repressed CYP17 promoter function. NF-1C protein and DNA binding were reduced in PCOS theca cell nuclear extracts, as compared with normal. Another NF-1C site between -102 and -90 bp of the promoter was also identified. However, mutation of this site had no effect on differential promoter function in PCOS theca cells. These studies demonstrate that 1) augmented CYP17 promoter function in PCOS theca cells results from increased basal regulation, and 2) diminished NF-1C-dependent repression may be one mechanism underlying increased basal CYP17 promoter activity and altered gene expression in PCOS theca cells.  相似文献   

2.
We have investigated the involvement of the MAPK signaling pathway in increased androgen biosynthesis and CYP17 gene expression in women with polycystic ovary syndrome (PCOS). A comparison of MAPK kinase (MEK1/2) and ERK1/2 phosphorylation in propagated normal and PCOS theca cells, revealed that MEK1/2 phosphorylation was decreased more than 70%, and ERK1/2 phosphorylation was reduced 50% in PCOS cells as compared with normal cells. Infection with dominant-negative MEK1 increased CYP17 mRNA and dehydroepiandrosterone (DHEA) abundance, whereas constitutively active MEK1 reduced DHEA production and CYP17 mRNA abundance. Similarly, the MEK inhibitor, PD98059, increased CYP17 mRNA accumulation and CYP17 promoter activity to levels observed in PCOS cells. Remarkably, in theca cells maintained in the complete absence of insulin, ERK1/2 phosphorylation was decreased in PCOS theca cells as compared with normal theca cells, and CYP17 mRNA and DHEA synthesis were increased in PCOS theca cells. These studies demonstrate that in PCOS cells reduced levels of activated MEK1/2 and ERK1/2 are correlated with increased androgen production, irrespective of the insulin concentration. These findings implicate alterations in the MAPK pathway in the pathogenesis of excessive ovarian androgen production in PCOS.  相似文献   

3.
To test the hypothesis that the hyperandrogenemia associated with polycystic ovary syndrome (PCOS) results from an intrinsic abnormality in ovarian theca cell steroidogenesis, we examined steroid hormone production, steroidogenic enzyme activity, and mRNA expression in normal and PCOS theca cells propagated in long-term culture. Progesterone (P4), 17alpha-hydroxyprogesterone (17OHP4), and testosterone (T) production per cell were markedly increased in PCOS theca cell cultures. Moreover, basal and forskolin-stimulated pregnenolone, P4, and dehydroepiandrosterone metabolism were increased dramatically in PCOS theca cells. PCOS theca cells were capable of substantial metabolism of precursors into T, reflecting expression of an androgenic 17beta-hydroxysteroid dehydrogenase. Forskolin-stimulated cholesterol side chain cleavage enzyme (CYP11A) and 17alpha-hydroxylase/17,20-desmolase (CYP17) expression were augmented in PCOS theca cells compared with normal cells, whereas no differences were found in steroidogenic acute regulatory protein mRNA expression. Collectively, these observations establish that increased CYP11A and CYP17 mRNA expression, as well as increased CYP17, 3beta-hydroxysteroid dehydrogenase, and 17beta-hydroxysteroid dehydrogenase enzyme activity per theca cell, and consequently increased production of P4, 17OHP4, and T, are stable properties of PCOS theca cells. These findings are consistent with the notion that there is an intrinsic alteration in the steroidogenic activity of PCOS thecal cells that encompasses multiple steps in the biosynthetic pathway.  相似文献   

4.
5.
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P<0.05) granulosa cell progesterone production and theca cell androstenedione production but did not affect (P>0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.  相似文献   

6.
During luteinization, circulating high-density lipoproteins supply cholesterol to ovarian cells via the scavenger receptor-B1 (SCARB1). In the mouse, SCARB1 is expressed in cytoplasm and periphery of theca, granulosa, and cumulus cells of developing follicles and increases dramatically during formation of corpora lutea. Blockade of ovulation in mice with meloxicam, a prostaglandin synthase-2 inhibitor, resulted in follicles with oocytes entrapped in unexpanded cumulus complexes and with granulosa cells with luteinized morphology and expressing SCARB1 characteristic of luteinization. Mice bearing null mutation of the Scarb1 gene (SCARB1−/−) had ovaries with small corpora lutea, large follicles with hypertrophied theca cells, and follicular cysts with blood-filled cavities. Plasma progesterone concentrations were decreased 50% in mice with Scarb1 gene disruption. When SCARB1−/− mice were treated with a combination of mevinolin [an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR)] and chloroquine (an inhibitor of lysosomal processing of low-density lipoproteins), serum progesterone was further reduced. HMGR protein expression increased in SCARB1−/− mice, independent of treatment. It was concluded that theca, granulosa, and cumulus cells express SCARB1 during follicle development, but maximum expression depends on luteinization. Knockout of SCARB1−/− leads to ovarian pathology and suboptimal luteal steroidogenesis. Therefore, SCARB1 expression is essential for maintaining normal ovarian cholesterol homeostasis and luteal steroid synthesis.  相似文献   

7.
8.
9.
Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Ovarian follicular development is controlled by numerous paracrine and endocrine regulators, including oocyte-derived growth differentiation factor 9 (GDF9), and a localized increase in bioavailable insulin-like growth factor 1 (IGF1). The effects of GDF9 on function of theca cells collected from small (3-6 mm) and large (8-22 mm) ovarian follicles were investigated. In small-follicle theca cells cultured in the presence of both LH and IGF1, GDF9 increased cell numbers and DNA synthesis, as measured by a (3)H-thymidine incorporation assay, and dose-dependently decreased both progesterone and androstenedione production. Theca cells from large follicles had little or no response to GDF9 in terms of cell proliferation or steroid production induced by IGF1. Small-follicle theca cell studies indicated that GDF9 decreased the abundance of LHR and CYP11A1 mRNA in theca cells, but had no effect on IGF1R, STAR, or CYP17A1 mRNA abundance or the percentage of cells staining for CYP17A1 proteins. GDF9 activated similar to mothers against decapentaplegics (SMAD) 2/3-induced CAGA promoter activity in transfected theca cells. Small-follicle theca cells had more ALK5 mRNA than large-follicle theca cells. Small-follicle granulosa cells appeared to have greater GDF9 mRNA abundance than large-follicle granulosa cells, but theca cells had no detectable GDF9 mRNA. We conclude that theca cells from small follicles are more responsive to GDF9 than those from large follicles and that GDF9 mRNA may be produced by granulosa cells in cattle. Because GDF9 increased theca cell proliferation and decreased theca cell steroidogenesis, oocyte- and granulosa cell-derived GDF9 may simultaneously promote theca cell proliferation and prevent premature differentiation of the theca interna during early follicle development.  相似文献   

18.
Azole antifungal ketoconazole (KET) was demonstrated to activate aryl hydrocarbon receptor (AhR). Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S)-(+)-KET and (2S,4R)-(−)-KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+)-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5–20× higher agonist activity (efficacy), as compared to (−)-KET; both enantiomers were AhR antagonists with equal potency (IC50). Consistently, (+)-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (−)-KET exerted less than 10% of (+)-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+)-KET was slightly higher as compared to (−)-KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+)-KET and (−)-KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR), a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.  相似文献   

19.
Mutation in CYP1B1 has been reported for patients with congenital glaucoma. However, the underlying mechanisms remain unknown. Here we show increased diurnal intraocular pressure (IOP) in Cyp1b1-deficient (Cyp1b1−/−) mice. Cyp1b1−/− mice presented ultrastructural irregular collagen distribution in their trabecular meshwork (TM) tissue along with increased oxidative stress and decreased levels of periostin (Postn). Increased levels of oxidative stress and decreased levels of Postn were also detected in human glaucomatous TM tissues. Furthermore, Postn-deficient mice exhibited TM tissue ultrastructural abnormalities similar to those of Cyp1b1−/− mice. Administration of the antioxidant N-acetylcysteine (NAC) restored structural abnormality of TM tissue in Cyp1b1−/− mice. In addition, TM cells prepared from Cyp1b1−/− mice exhibited increased oxidative stress, altered adhesion, and decreased levels of Postn. These aberrant cellular responses were reversed in the presence of NAC or by restoration of Cyp1b1 expression. Cyp1b1 knockdown or inhibition of CYP1B1 activity in Cyp1b1+/+ TM cells resulted in a Cyp1b1−/− phenotype. Thus, metabolic activity of CYP1B1 contributes to oxidative homeostasis and ultrastructural organization and function of TM tissue through modulation of Postn expression.  相似文献   

20.
In previous work, we showed that the binding of the liver x receptor α:peroxisome proliferator-activated receptor α (LXRα:PPARα) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRα:PPARα can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRα and PPARα in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRα:PPARα, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRα:PPARα to human CYP7A1 Site I was increased in the presence of either LXRα or PPARα ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRα and PPARα. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRα:PPARα was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRα:PPARα heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号