首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice. Levels of key regulatory metabolites, such as fructose-2,6-bisphosphate, matched the activity of metabolic pathways. Protein levels of glycolytic and gluconeogenic enzymes were not different. pAMPK protein levels increased with fasting and were higher in ShcKO versus WT mice. Therefore, Shc proteins play a role in shifting the metabolism from glucose oxidation to gluconeogenesis and lipid catabolism and should be considered as regulators of fuel selection. Fuel selection and utilization could play a critical role in healthy aging. Characterization of metabolic events in ShcKO mice would help to elucidate how metabolism is influenced by these proteins.  相似文献   

2.
3.
Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity.  相似文献   

4.
Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole‐body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well‐established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc‐deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high‐fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin‐dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid‐oxidative enzymes was observed in ShcKO BAT. Levels of brown fat‐specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice.  相似文献   

5.
Mannoheptulose (MH), a sugar found in avocados that inhibits glycolysis in vitro, has been preliminarily investigated as a novel food ingredient for dogs. This study aimed to determine the effects of dietary MH, delivered as an extract of un-ripened avocado, on energy expenditure (EE) in healthy adult Labrador Retriever dogs (total of 12 dogs, 26.99 ± 0.634 kg, 4.9 ± 0.2 y). The study was a double-blind, cross-over with each dog receiving both dietary treatments, control (CON) and MH (400 mg/kg of diet; 6 mg/kg BW), in random order. Resting and post-prandial (10 h) EE and respiratory quotient (RQ) were determined by indirect calorimetry (d 42). The following day, body composition was assessed using dual X-ray absorptiometry. Continuous activity monitoring was conducted using an Atical® accelerometer (d 43–47). A vastus lateralis muscle biopsy was obtained prior to the morning meal (d 49) and 4 h after consumption of their meal (d 56) to determine the protein content and phosphorylation of 5'' adenosine monophosphate-activated protein kinase (AMPK). Diet did not affect body weight, resting EE or skeletal muscle AMPK phosphorylation. Dogs fed MH had significantly lower post-prandial RQ (p = 0.02) and ratio of fat to lean body mass (p = 0.02). Physical activity during light time periods (but not dark) was lower in dogs fed MH (p < 0.05) during weekends, but not on weekdays. These results suggest that MH affects energy balance of adult dogs, but that these effects are not dose dependent and not due to physical activity.  相似文献   

6.
7.
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.  相似文献   

8.
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.  相似文献   

9.
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of ≈35°C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature (≈22°C) MR-1 grows with a doubling time of about 40 min, but when moved from 22°C to 3°C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of ≈67 h. In comparison to cells grown at 22°C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22°C.  相似文献   

10.
Angiogenesis is one of the most important processes for normal lung development. Oxidative stress can impair the pulmonary angiogenesis, leading to chronic lung disease or Bronchopulmonary dysplasia (BPD).

Objective

To investigate the protective effects of EC-SOD overexpression on pulmonary angiogenesis on neonates following exposure to acute hyperoxia.

Design/Methods

Transgenic (TG) and wild-type (WT) neonatal mice (10 mice per group) were exposed either to air (control group) or 95% O2 for 7 days starting at birth. After exposure, all animals were sacrificed. ROS concentration was measured in lung homogenates using OxiSelect ROS assay kit. Mean vascular density (MVD) was measured using anti CD34 staining. RNA was extracted and the angiogenesis markers, VEGF, VEGFR1 and VEGFR2 and PECAM-1 were analyzed by RT-q PCR. VGEF protein was measured using Western blots. Endothelial progenitor cells (EPCs) was assayed by flow cytometer.

Results

There was a significant reduction of ROS in TG hyperoxic neonate group (156±14.2) compared to WT hyperoxic animals (255±35.1). Evaluation of MVD, using anti-CD34, showed marked significant increase of MVD in the TG group following hyperoxic exposure (85±12) in comparison to the WT hyperoxic group (62±8.4), (P<0.05). Among the hyperoxic groups, both RNA and protein of VEGF expression were significantly reduced in the WT animals compared to the TG group (P<0.05). The same trend was found in VEGFR 1 and 2 which were significantly reduced in WT group compared to the TG group (P<0.05). There was no significant difference between hyperoxia TG and control group (P>0.05). PECAM expression was significantly reduced in both hyperoxic compared to normoxic groups (P<0.05). EPC’s showed significant reduction in WT hyperoxic group compared to others (P>0.05).

Conclusions

EC-SOD plays a key role in preserving angiogenesis by scavenging free radicals which has an inhibitory effect on angiogenesis process in neonatal mice lung following exposure to hyperoxia.  相似文献   

11.
Oscillations in force output change in specific frequency bins and have important implications for understanding aging and pathological motor control. Although previous studies have demonstrated that oscillations from 0–1 Hz can be influenced by aging and visuomotor processing, these studies have averaged power within this bandwidth and not examined power in specific frequencies below 1 Hz. The purpose was to determine whether a differential modulation of force below 1 Hz contributes to changes in force control related to manipulation of visual feedback and aging. Ten young adults (25±4 yrs, 5 men) and ten older adults (71±5 yrs, 4 men) were instructed to accurately match a target force at 2% of their maximal isometric force for 35 s with abduction of the index finger. Visual feedback was manipulated by changing the visual angle (0.05°, 0.5°, 1.5°) or removing it after 15 s. Modulation of force below 1 Hz was quantified by examining the absolute and normalized power in seven frequency bins. Removal of visual feedback increased normalized power from 0–0.33 Hz and decreased normalized power from 0.66–1.0 Hz. In contrast, magnification of visual feedback (visual angles of 0.5° and 1.5°) decreased normalized power from 0–0.16 Hz and increased normalized power from 0.66–1.0 Hz. Older adults demonstrated a greater increase in the variability of force with magnification of visual feedback compared with young adults (P = 0.05). Furthermore, older adults exhibited differential force modulation of frequencies below 1 Hz compared with young adults (P<0.05). Specifically, older adults exhibited greater normalized power from 0–0.16 Hz and lesser normalized power from 0.66–0.83 Hz. The changes in force modulation predicted the changes in the variability of force with magnification of visual feedback (R2 = 0.80). Our findings indicate that force oscillations below 1 Hz are associated with force control and are modified by aging and visual feedback.  相似文献   

12.
Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (−34 ± 4 mV) is similar to wild-type (WT) (−37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (−131 ± 4 mV for K525C and −120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.  相似文献   

13.

Background

Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.

Methods

Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.

Results

Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.

Conclusion

Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.  相似文献   

14.
With age, protein damage accumulates and increases the risk of age‐related diseases. The proteasome activator PA28αβ is involved in protein damage clearance during early embryogenesis and has demonstrated protective effects against proteinopathy. We have recently discovered that adult female mice overexpressing PA28α (PA28αOE) have enhanced learning and memory, and protein extracts from their hippocampi prevent aggregation more efficiently than wild type. In this study, we investigated the effect of overexpressing PA28α on aging using C57BL/6N×BALB/c F2 hybrid mice. We found that the hippocampal anti‐aggregation effect was maintained in young adult (7 months) to middle‐aged (15 months) and old (22 months) PA28αOE females. While the PA28αOE influence on learning and memory gradually decreased with aging, old PA28αOE females did not display the typical drop in explorative behavior—a behavioral hallmark of aging—but were as explorative as young mice. PA28αOE lowered PA28‐dependent proteasome capacity in both heart and hippocampus, and there was no indication of lower protein damage load in PA28αOE. The life span of PA28αOE was also similar to wild type. In both wild type and PA28αOE, PA28‐dependent proteasome capacity increased with aging in the heart, while 26S and 20S proteasome capacities were unchanged in the timepoints analyzed. Thus, PA28αOE females exhibit improved hippocampal ability to prevent aggregation throughout life and enhanced cognitive capabilities with different behavioral outcomes dependent on age; improved memory at early age and a youth‐like exploration at old age. The cognitive effects of PA28αβ combined with its anti‐aggregation molecular effect highlight the therapeutical potential of PA28αβ in combating proteinopathies.  相似文献   

15.
Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH‐deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa‐miR‐31, hsa‐miR‐146b, hsa‐miR‐30e, hsa‐miR‐100, hsa‐miR‐181b‐2, hsa‐miR‐195, and hsa‐miR‐181b‐1, which target the FoxO and mTOR pathways. Intriguingly, miR‐181b‐5p, miR‐361‐3p, miR‐144‐3p, and miR‐155‐5p were commonly regulated in the serum of humans and GH‐deficient mice. In vitro assays confirmed target genes for the main up‐regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age‐related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.  相似文献   

16.

Aims

The aim of this study was to elucidate the effects of regulator of G-protein signaling 5 (Rgs5), a negative regulator of G protein-mediated signaling, on atrial repolarization and tachyarrhythmia (ATA) in mice.

Methods and Results

In present study, the incidence of ATA were increased in Rgs5−/− Langendorff-perfused mouse hearts during program electrical stimulation (PES) (46.7%, 7 of 15) and burst pacing (26.7%, 4 of 15) compared with wild-type (WT) mice (PES: 7.1%,1 of 14; burst:7.1%,1 of 14) (P<0.05). And the duration of ATA also shown longer in Rgs5−/− heart than that in WT, 2 out of 15 hearts exhibited sustained ATA (>30 s) but none of them observed in WT mice. Atrial prolonged repolarization was observed in Rgs5−/− hearts including widened P wave in surface ECG recording, increased action potential duration (APD) and atrial effective refractory periods (AERP), all of them showed significant difference with WT mice (P<0.05). At the cellular level, whole-cell patch clamp recorded markedly decreased densities of repolarizing K+ currents including IKur (at +60 mV: 14.0±2.2 pF/pA) and Ito (at +60 mV: 16.7±1.3 pA/pF) in Rgs5−/− atrial cardiomyocytes, compared to those of WT mice (at +60 mV Ito: 20.4±2.0 pA/pF; Ikur: 17.9±2.0 pF/pA) (P<0.05).

Conclusion

These results suggest that Rgs5 is an important regulator of arrhythmogenesis in the mouse atrium and that the enhanced susceptibility to atrial tachyarrhythmias in Rgs5−/− mice may contribute to abnormalities of atrial repolarization.  相似文献   

17.
Laboratory mice routinely are housed at 20 to 22 °C—well below the murine thermoneutral zone of 29 to 34 °C. Chronic cold stress requires greater energy expenditure to maintain core body temperature and can lead to the failure of mouse models to emulate human physiology. We hypothesized that mice housed at ambient temperatures of 20 to 22 °C are chronically cold-stressed, have greater energy expenditure, and have high glucose utilization in brown adipose tissue. To test our hypotheses, we used indirect calorimetry to measure energy expenditure and substrate utilization in C57BL/6J and Crl:NU-Foxn1nu nude mice at routine vivarium (21 °C), intermediate (26 °C), and heated (31 °C) housing temperatures. We also examined the activation of interscapular brown adipose tissue, the primary site of nonshivering thermogenesis, via thermography and glucose uptake in this region by using positron emission tomography. Energy expenditure of mice was significantly higher at routine vivarium temperatures compared with intermediate and heated temperatures and was associated with a shift in metabolism toward glucose utilization. Brown adipose tissue showed significant activation at routine vivarium and intermediate temperatures in both hirsuite and nude mice. Crl:NU-Foxn1nu mice experienced greater cold stress than did C57BL/6J mice. Our data indicate mice housed under routine vivarium conditions are chronically cold stress. This novel use of thermography can measure cold stress in laboratory mice housed in vivaria, a key advantage over classic metabolic measurement tools. Therefore, thermography is an ideal tool to evaluate novel husbandry practices designed to alleviate murine cold stress.Abbreviations: BAT, brown adipose tissue; EPR, entropy production rate; PET, positron emission tomography; ROI, region of interest; RQ, respiratory quotient; VCO2, volume of carbon dioxide produced; VO2, volume of oxygen consumedLaboratory mice routinely are housed at ‘room temperature,’ that is, 20 to 22 °C. Room temperature is within the recommendations of the Guide for the Care and Use of Laboratory Animals14 but is well below the murine thermoneutral zone of 29 to 34 °C.3,17 Systemic physiologic cold stress creates a much greater energy demand on mice than humans due to the surface area to volume ratio. Mice housed at routine vivarium temperatures have greater oxygen consumption and feed intake than at thermoneutral temperatures (30 °C).5,27 Ultimately, this difference may adversely affect translational research, sometimes in unpredictable ways.11,17 For example, mice housed at temperatures below their thermoneutral zone have a blunted response to LPS-induced fever and lack the classic early-phase hypothermia, demonstrating impaired immune function.22 In another example, blood pressure and heart rate are significantly elevated at routine vivarium temperatures compared with thermoneutral temperatures,23 again demonstrating that rodent physiology is perturbed under such housing conditions.Mammals defend their body temperature through a series of mechanisms that progressively increase in energy cost: behavior,10 insulative response,7 and thermogenesis.3 Behavioral thermoregulation is the principle mechanism that enables the survival of small rodents, however behavioral adaptations of laboratory rodents housed in barren cages are limited compared with those of their wild counterparts; wild rodents adapt to cold stress through techniques like seeking shelter, burrowing, and building nests.9,10 The insulative response shunts blood from peripheral sites toward core organs to conserve heat.7 Once the low-energy cold-adaptive responses are overwhelmed, mammals maintain core body temperature by increasing energy expenditure via shivering and nonshivering thermogenesis.9,19 Rodents, arctic mammals, and infant mammals primarily rely on nonshivering thermogenesis to preserve core body temperature.2Nonshivering thermogenesis is achieved through mitochondria-rich brown adipose tissue (BAT). The largest deposits of rodent BAT are located in the interscapular region. BAT produces heat rapidly via the oxidative combustion of glucose and triglycerides.2,6 BAT is rich in β3-adrenergic receptors, and its activation is mediated primarily by the sympathetic nervous system.2 BAT responds within minutes to the sensation of cold. When active, rodent BAT is highly metabolic and can receive as much as 40% of the cardiac outflow.7Given our group''s experience with preclinical metabolic imaging,8 we hypothesized that the cold stress imposed by routine husbandry temperatures (21 °C) induces a global shift toward glucose-dependent metabolism that is driven by nonshivering thermogenesis. Moreover, we hypothesized that athymic nude (Crl:NU-Foxn1nu) mice housed at room temperatures experience significantly greater energy expenditure and glucose-dependent metabolism than do hirsute (C57BL/6J) mice.To test our hypotheses, we measured energy expenditure (entropy production rate, EPR, cal/min) and metabolic substrate utilization via indirect calorimetry6 and interscapular BAT heat production via infrared thermography and BAT glucose utilization by fluorodeoxyglucose positron emission tomography (PET) at various environmental temperatures, ranging from routine vivarium temperature (21 °C) to heat-supported temperatures (31 °C). Briefly, indirect calorimetry measures O2 consumption (VO2) and CO2 production (VCO2) to enable the calculation of the energy expenditure of the organism according to the stoichiometric formulas of biologic combustion:With these formulas, indirect calorimetry can also be used to calculate global glucose and lipid utilization using the respiratory quotient (RQ), a unitless ratio between VCO2:VO2.5 An RQ of 0.7 is indicative of the use of lipid as the primary substrate of biologic combustion, whereas an RQ of 1.0 is indicative of the primary use of glucose (for additional information, see reference 6).  相似文献   

18.
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti‐aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled‐release mitochondrial protonophore (CRMP) that is functionally liver‐directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver‐directed fashion could reduce oxidative damage and improve age‐related metabolic disease and lifespan in diet‐induced obese mice. Oral administration of CRMP (20 mg/[kg‐day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74‐week‐old) high‐fat diet (HFD)‐fed C57BL/6J male mice, independently of changes in body weight, whole‐body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long‐term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94–104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex‐specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof‐of‐concept data to support further studies investigating the use of liver‐directed mitochondrial uncouplers to promote healthy aging in humans.  相似文献   

19.
1. An optimum of environmental temperature is to be expected for the utilization of food energy in warm blooded animals if their food intake is determined by their appetite. 2. Baby chicks were kept in groups of five chicks in a climatic cabinet at environmental temperatures of 21°, 27°, 32°, 38°, and 40°C. during the period of 6 to 15 days of age. The intake of qualitatively complete food was determined by their appetite. Food intake, excretion, and respiratory exchange were measured. Control chicks from the same hatch as the experimental groups were raised in a brooder and were given the same food as the experimental chicks. The basal metabolism of each experimental group was determined from 24 to 36 hours without food at the age of 16 days. 3. The daily rate of growth increased with decreasing environmental temperature from 2.74 gm. at 40°C. to 4.88 gm. at 21°C. This was 4.2 to 6.5 per cent of their body weight. 4. The amount of food consumed increased in proportion to the decrease in temperature. 5. The availability of the food, used for birds instead of the digestibility and defined as See PDF for Structure showed an optimum at 38°C. 6. The CO2 production increased from 2.95 liters CO2 per day per chick at 40°C. to 6.25 liters at 21°C. Per unit of the 3/4 power of the body weight, 23.0 liters CO2 per kilo3/4 was produced at 40°C. and 43.4 liters per kilo3/4 at 21°C. The CO2 production per unit of 3/4 power of the weight increased at an average rate of approximately 1 per cent per day increase in age. The R.Q. was, on the average, 1.04 during the day and 0.92 during the night. 7. The net energy is calculated on the basis of C and N balances. A maximum of 11.8 Cal. net energy per chick per day was found at 32°C. At 21°C. only 6.9 Cal. net per day per chick was produced and at 40°C. an average of 6.7 Cal. 8. The composition of the gained body substance changed according to the environmental temperature. The protein stored per gram increase in body weight varied from 0.217 to 0.266 gm. protein and seemed unrelated to the temperature. The amount of fat per gram gain in weight dropped from a maximum of 0.153 gm. at 32°C. to 0.012 gm. at 21°C. and an average of 0.107 gm. at 40°C. The energy content per gram of gain in weight had its maximum of 2.95 Cal. per gm. at 38°C. and its minimum of 1.41 Cal. per gm. at 21°C. at which temperature the largest amount of water (0.763 gm. per gm. increase in body weight) was stored. 9. The basal metabolism increased from an average of 60 Cal. per kilo3/4 at an environmental temperature of 40°C. to 128 Cal. per kilo3/4 at 21°C. No indication of a critical temperature was found. 10. The partial efficiency, i.e. the increase in net energy per unit of the corresponding increase in food energy, seemed dependent on the environmental temperature, reaching a maximum of 72 per cent of the available energy at 38°C. and decreasing to 57 per cent at 21°C. and to an average of 60 per cent at 40°C. 11. The total efficiency, i.e. the total net energy produced per unit of food energy taken in, was maximum (34 per cent of the available energy) at 32°C., dropped to 16 per cent at 21°C., and to an average of 29 per cent at 40°C.  相似文献   

20.
Young mice of a selected line of the dilute brown strain of mice exhibit over the range 15–25°C. (body temperature) a relation of frequency of breathing movements to temperature such that when fitted by the Arrhenius equation the data give a value for the constant µ of 24,000± calories or, less frequently, 28,000±. Young mice of an inbred albino strain show over the range 15–20°C. a value of µ = 34,000±, or, less frequently, 14,000±, with a critical temperature at about 20°C. and a value of µ = 14,000± above 20°C. The F1 hybrids of these two strains, and the backcross generations to either parent strain, exhibit only those four values of the temperature characteristic observed in the parent strains and none other. One may therefore speak of the inheritance of the value of the constant µ, but the inheritance shows in this instance no Mendelian behavior. Furthermore there appears to be inherited the occurrence (or absence) of a critical temperature at 20°C. These experiments indicate the "biological reality" of the temperature characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号