首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134–347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression.  相似文献   

2.
It is well recognized that PIAS1, a SUMO (small ubiquitin-like modifier) E3 ligase, modulates such cellular processes as cell proliferation, DNA damage responses, and inflammation responses. Recent studies have shown that PIAS1 also plays a part in cell differentiation. However, the role of PIAS1 in adipocyte differentiation remains unknown. CCAAT/enhancer-binding protein β (C/EBPβ), a major regulator of adipogenesis, is a target of SUMOylation, but the E3 ligase responsible for the SUMOylation of C/EBPβ has not been identified. The present study showed that PIAS1 functions as a SUMO E3 ligase of C/EBPβ to regulate adipogenesis. PIAS1 expression was significantly and transiently induced on day 4 of 3T3-L1 adipocyte differentiation, when C/EBPβ began to decline. PIAS1 was found to interact with C/EBPβ through the SAP (scaffold attachment factor A/B/acinus/PIAS) domain and SUMOylate it, leading to increased ubiquitination and degradation of C/EBPβ. C/EBPβ became more stable when PIAS1 was silenced by RNA interference (RNAi). Moreover, adipogenesis was inhibited by overexpression of wild-type PIAS1 and promoted by knockdown of PIAS1. The mutational study indicated that the catalytic activity of SUMO E3 ligase was required for PIAS1 to restrain adipogenesis. Importantly, the inhibitory effect of PIAS1 overexpression on adipogenesis was rescued by overexpressed C/EBPβ. Thus, PIAS1 could play a dynamic role in adipogenesis by promoting the SUMOylation of C/EBPβ.  相似文献   

3.
4.
5.
Thyroid hormone receptor (TR) α and β mediate thyroid hormone action at target tissues. TR isoforms have specific roles in development and in adult tissues. The mechanisms underlying TR isoform-specific action, however, are not well understood. We demonstrate that posttranslational modification of TR by conjugation of small SUMO to TRα and TRβ plays an important role in triiodothyronine (T3) action and TR isoform specificity. TRα was sumoylated at lysines 283 and 389, and TRβ at lysines 50, 146, and 443. Sumoylation of TRβ was ligand-dependent, and sumoylation of TRα was ligand-independent. TRα-SUMO conjugation utilized the E3 ligase PIASxβ and TRβ-SUMO conjugation utilized predominantly PIAS1. SUMO1 and SUMO3 conjugation to TR was important for T3-dependent gene regulation, as demonstrated in transient transfection assay and studies of endogenous gene regulation. The functional role of SUMO1 and SUMO3 in T3 induction in transient expression assays was closely matched to the pattern of TR and cofactor recruitment to thyroid hormone response elements (TREs) as determined by ChIP assays. SUMO1 was required for the T3-induced recruitment of the co-activator CREB-binding protein (CBP) and release of nuclear receptor co-repressor (NCoR) on a TRE but had no significant effect on TR DNA binding. SUMO1 was required for T3-mediated recruitment of NCoR and release of CBP from the TSHβ-negative TRE. SUMO3 was required for T3-stimulated TR binding to the TSHβ-negative TRE and recruitment of NCoR. These findings demonstrate that conjugation of SUMO to TR has a TR-isoform preference and is important for T3-dependent gene induction and repression.  相似文献   

6.
7.
The CTCF Insulator Protein Is Posttranslationally Modified by SUMO   总被引:1,自引:0,他引:1  
The CTCF protein is a highly conserved zinc finger protein that is implicated in many aspects of gene regulation and nuclear organization. Its functions include the ability to act as a repressor of genes, including the c-myc oncogene. In this paper, we show that the CTCF protein can be posttranslationally modified by the small ubiquitin-like protein SUMO. CTCF is SUMOylated both in vivo and in vitro, and we identify two major sites of SUMOylation in the protein. The posttranslational modification of CTCF by the SUMO proteins does not affect its ability to bind to DNA in vitro. SUMOylation of CTCF contributes to the repressive function of CTCF on the c-myc P2 promoter. We also found that CTCF and the repressive Polycomb protein, Pc2, are colocalized to nuclear Polycomb bodies. The Pc2 protein may act as a SUMO E3 ligase for CTCF, strongly enhancing its modification by SUMO 2 and 3. These studies expand the repertoire of posttranslational modifications of CTCF and suggest roles for such modifications in its regulation of epigenetic states.  相似文献   

8.
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is a key regulator of genes implicated in lipid homeostasis and inflammation. PPARα trans-activity is enhanced by recruitment of coactivators such as SRC1 and CBP/p300 and is inhibited by binding of corepressors such as NCoR and SMRT. In addition to ligand binding, PPARα activity is regulated by post-translational modifications such as phosphorylation and ubiquitination. In this report, we demonstrate that hPPARα is SUMOylated by SUMO-1 on lysine 185 in the hinge region. The E2-conjugating enzyme Ubc9 and the SUMO E3- ligase PIASy are implicated in this process. In addition, ligand treatment decreases the SUMOylation rate of hPPARα. Finally, our results demonstrate that SUMO-1 modification of hPPARα down-regulates its trans-activity through the specific recruitment of corepressor NCoR but not SMRT leading to the differential expression of a subset of PPARα target genes. In conclusion, hPPARα SUMOylation on lysine 185 down-regulates its trans-activity through the selective recruitment of NCoR.  相似文献   

9.
10.
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.  相似文献   

11.
Poly(ADP-ribosyl)ation (PARylation) and SUMO modification (SUMOylation) are novel post-translational modifications (PTMs) mainly induced by PARP1 and SUMO1. Growing evidence has revealed that C/EBPβ plays multiple roles in biological processes and participates in cardiovascular diseases. However, the cross-talk between C/EBPβ PARylation and SUMOylation during cardiovascular diseases is unknown. This study aims to investigate the effects of C/EBPβ PTMs on cardiac hypertrophy and its underlying mechanism. Abdominal aortic constriction (AAC) and phenylephrine (PE) were conducted to induce cardiac hypertrophy. Intramyocardial delivery of recombinant adenovirus (Ad-PARP1) was taken to induce PARP1 overexpression. In this study, we found C/EBPβ participates in PARP1-induced cardiac hypertrophy. C/EBPβ K134 residue could be both PARylated and SUMOylated individually by PARP1 and SUMO1. Moreover, the accumulation of PARylation on C/EBPβ at K134 site exhibits downregulation of C/EBPβ SUMOylation at the same site. Importantly, C/EBPβ K134 site SUMOylation could decrease C/EBPβ protein stability and participates in PARP1-induced cardiac hypertrophy. Taken together, these findings highlight the importance of the cross-talk between C/EBPβ PTMs at K134 site in determining its protein level and function, suggesting that multi-target pharmacological strategies inhibiting PARP1 and activating C/EBPβ SUMOylation would be potential for treating pathological cardiac hypertrophy.  相似文献   

12.
MAPK/p38 is an important mammalian signaling cascade that responds to a variety of intracellular or extracellular stimuli, such as reactive oxygen species (ROS), and participates in numerous physiological and pathological processes. However, the biological function of p38 in different tumors, and even at different stages of the same tumor, remains elusive. To further understand the regulatory mechanism of p38 and oxidative stress in the occurrence and development of gastric cancer, we report SUMOylation as a novel post-translational modification occurring on lysine 152 of MAPK14/p38α through immunoprecipitation and series of pull-down assays in vitro and in vivo. Importantly, we determine that p38α-SUMOylation functions as an authentic sensor and accelerator of reactive oxygen species generation via interaction with and activation of MK2 in the nucleus, and the ROS accumulation, in turn, promotes the SUMOylation of p38α by stabilizing the PIASxα protein. This precise regulatory mechanism is exploited by gastric cancer cells to create an internal environment for survival and, ultimately, metastasis. This study reveals novel insights into p38α-SUMOylation and its association with the intracellular oxidative stress response, which is closely related to the processes of gastric cancer. Furthermore, the PIASxα/p38α-SUMOylation/MK2 cis-axis may serve as a desirable therapeutic target in gastric cancer as targeting PIASxα, MK2, or a specific peptide region of p38α may reconcile the aberrant oxidative stress response in gastric cancer cells.Subject terms: Gastric cancer, Sumoylation  相似文献   

13.
14.
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1) domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD) of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.  相似文献   

15.
16.
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号