首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.  相似文献   

2.
Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3′-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3′H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide–binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.  相似文献   

3.
Enhanced hepatic levels of cytochrome P450 2E1 (CYP2E1) may play a key role in the pathogenesis of some liver diseases because CYP2E1 represents a significant source of reactive oxygen species. Although a large fraction of CYP2E1 is located in the endoplasmic reticulum, CYP2E1 is also present in mitochondria. In this study, we asked whether ethanol, a known inducer of microsomal CYP2E1, could also increase CYP2E1 within mitochondria. Our findings indicated that ethanol increased microsomal and mitochondrial CYP2E1 in cultured rat hepatocytes and in the liver of lean mice. This was associated with decreased levels of glutathione, possibly reflecting increased oxidative stress. In contrast, in leptin-deficient obese mice, ethanol administration did not increase mitochondrial CYP2E1, nor it depleted mitochondrial glutathione, suggesting that leptin deficiency hampers mitochondrial targeting of CYP2E1. Thus, ethanol intoxication increases CYP2E1 not only in the endoplasmic reticulum but also in mitochondria, thus favouring oxidative stress in these compartments.  相似文献   

4.

BACKGROUND:

Genetic variation in the vitamin K epoxide reductase complex (VKORC1) and cytochrome P450 4F2 (CYP4F2) genes were found to be strongly associated with the oral anticoagulant (OA) dose requirement. The distribution of genetic variation in these two genes was found to show large inter- and intra-ethnic difference.

MATERIALS AND METHODS:

A total of 470 unrelated, healthy volunteers of South Indians of either sex (age: 18-60 years) were enrolled for the study. A 5 ml of venous blood was collected and the genomic deoxyribonucleic acid (DNA) was extracted by using phenol-chloroform extraction method. Real-time quantitative polymerase chain reaction (RT-PCR) method was used for genotyping.

RESULTS:

The variant allele frequencies of VKORC1 rs2359612 (T), rs8050894 (C), rs9934438 (T) and rs9923231 (A) were found to be 11.0%, 11.8%, 11.7% and 12.0%, respectively. The variant allele VKORC1 rs7294 was (80.1%) more frequent and the variant allele CYP4F2 * 3 was found to be 41.8% in South Indians. The allele, genotype and haplotype frequencies of VKORC1 and CYP4F2 gene were distinct from other compared HapMap populations (P < 0.0001).

CONCLUSION:

The findings of our study provide the basic genetic information for further pharmacogenetic based investigation of OA therapy in the population.  相似文献   

5.
Direct electron transfer has been demonstrated between cytochrome P450 2B4 (CYP2B4), P450 1A2 (CYP1A2), sterol 14α-demethylase (CYP51MT) and screen printed graphite electrodes, modified by gold nanoparticles and didodecyldimethyl ammonium bromide (DDAB). The proposed method for preparation of enzymatic nanostructured electrodes may be used for electrodetection of this hemoprotein provided that 2–200 pmol P450 per electrode has been adsorbed. Electron transfer, direct electrochemical reduction and interaction with P450 substrates (oxygen, benzphetamine, lanosterol) and inhibitor ketoconazole were analyzed using cyclic voltammetry (CV), square wave (SWV) or differential pulse (DPV) voltammetry, and amperometry.  相似文献   

6.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n -alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0–500 μ M of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n -alkyl side-chain length (C0–C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 μ M concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain–substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 253–262, 1998  相似文献   

7.
Liu X  Wu J  Liu H  Lai G  Zhao Y 《Gene》2012,505(2):352-359
We have previously established a cytochrome P450 4F2 (CYP4F2) transgenic mouse model. The present study elucidated the molecular foundation of hypertension by androgen-induction in this model. The renal expression of CYP4F2 in transgenic mice was highly expressed and strongly induced with 5α-dihydrotestosterone (DHT) treatment determined by Western blot. DHT also increased the renal arachidonic acid ω-hydroxylation and urinary 20-hydroxyeicosatetraenoic acid (20-HETE) excretion (P<0.01), and furthermore elevated the systolic blood pressure by 10 and 22 mm Hg (P<0.05) in female and castrated male transgenic mice, respectively. HET0016 completely eliminated the androgen-induced effects (P<0.01). Endogenous Cyp4a ω-hydroxylases, evaluated by real-time quantitative PCR, were significantly suppressed in transgenic mice (P<0.05). Importantly, transgenic mice with increased 20-HETE showed decreased epoxyeicosatrienoic acids (EETs) and increased dihydroxyeicosatetraenoic acids determined by liquid chromatography-tandem mass spectrometry, contributing to significantly raised ratio of 20-HETE/EETs in the urine and kidney homogenate (P<0.01). These data demonstrate that the androgen aggravated hypertension possibly through an altered ratio of 20-HETE/EETs in CYP4F2 transgenic mice.  相似文献   

8.
Structural plasticity of mammalian cytochromes P450 (CYP) has recently been explored in our laboratory and elsewhere to understand the ligand-binding promiscuity. CYP2B4 exhibits very different conformations and thermodynamic signatures in binding the small inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) versus the large bifonazole. Using four key active-site mutants (F296A, T302A, I363A, and V367L) that are involved in binding one or both inhibitors, we dissected the thermodynamic basis for the ability of CYP2B4 to bind substrates and inhibitors of different sizes and chemistry. In all cases, 1:1 binding stoichiometry was observed. The inhibitors 4-CPI, 1-(4-chlorophenyl)imidazole, and 1-(2-(benzyloxy)ethyl)imidazole bind to the mutants with a free energy difference (ΔΔG) of ∼ 0.5 to 1 kcal/mol compared with the wild type but with a large entropy-enthalpy compensation of up to 50 kcal/mol. The substrate testosterone binds to all four mutants with a ΔΔG of ∼ 0.5 kcal/mol but with as much as 40 kcal/mol of entropy-enthalpy compensation. In contrast, benzphetamine binding to V367L and F296A is accompanied by a ΔΔG of ∼ 1.5 and 3 kcal/mol, respectively. F296A, I363A, and V367L exhibit very different benzphetamine metabolite profiles, indicating the different substrate-binding orientations in the active site of each mutant. Overall, the findings indicate that malleability of the active site allows mammalian P450s to exhibit a high degree of thermodynamic fidelity in ligand binding.  相似文献   

9.
Male Sprague–Dawley rats were treated intraperitoneally with corn oil, the aryl hydrocarbon receptor (AHR) agonist β‐naphthoflavone (βNF), or the relatively weak AHR agonist α‐naphthoflavone (αNF). Animals treated with βNF experienced a significant loss (12%) of total body mass over 5 days and a dramatic elevation of CYP1A1 mRNA in all of the organs studied. Treatment with αNF had no significant effect on body mass after 5 days and caused only minor increases of liver, kidney, and heart CYP1A1 mRNA. In contrast, lung CYP1A1 mRNA was increased by αNF treatment to levels comparable to that seen with βNF treatment. CYP2E1 mRNA levels were also elevated in liver, lung, kidney, and heart in response to βNF treatment, whereas αNF was without effect. Large increases of CYP1A1‐dependent 7‐ethoxyresorufin O‐deethylation (EROD) activity occurred with microsomes prepared from the tissues of βNF‐treated animals. Comparatively small changes were associated with αNF treatment, with the exception of lung, where EROD activity was increased to approximately 60% of that with βNF treatment. CYP2E1‐dependent p‐nitrophenol hydroxylase (PNP) activity was also increased by βNF treatment in microsomes prepared from kidney (3.1‐fold), whereas αNF was without effect. In contrast, αNF or βNF treatment caused significant decreases of lung microsomal PNP (72% and 27% of corn oil control, respectively) and 7‐pentoxyresorufin O‐deethylation (48% and 17% of corn oil control, respectively) activities, indicating that PNP activity may be catalyzed by P450 isoforms other than CYP2E1 in rat lung. We conclude that βNF and αNF have differential effects on the expression and catalytic activity of CYP1A1 and CYP2E1, depending upon the organ studied. These changes most likely occur as a result of the direct actions of these compounds as AHR agonists, in addition to secondary effects associated with AHR‐mediated toxicity. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 29–40, 1999  相似文献   

10.
We studied effect of artificial extracellular matrices (ECMs), such as collagen I, poly (N-p-vinylbenzyl-4-O-β-d-galactopyranosyl-d-gluconamide)(PVLA) and E-cadherin–IgG Fc (E-cad-Fc) on hepatic metabolism to identify the mechanism of in vivo hepatocellular functional and metabolic integrity. mRNA expression of liver function marker, cytochrome P450 (CYP) and transporter genes in hepatocytes were compared among used ECMs using real-time RT-PCR. mRNA expressions of Cyp2c29 and Cyp2d22 among CYP genes in hepatocytes on PVLA were recovered after 3 days due to enhanced liver-specific function by the spheroid formation of hepatocytes whereas mRNA expressions of CYP genes in hepatocytes on collagen and E-cad-Fc drastically decreased with time. mRNA expressions of the Cyp2c29 and Cyp2d22 in hepatocytes on PVLA were more recovered in the presence of epidermal growth factor (EGF) due to the more and bigger spheroid formation of hepatocytes. Multidrug resistance-associated protein 2 (Mrp2) protein was accumulated at intracellular lumen as similar to bile duct in hepatocyte spheroid formed on PVLA, indicating that spheroid formation of hepatocytes is very important for maintaining liver functions.  相似文献   

11.
The kinetics of formation and transformation of oxygen complexes of two heme-thiolate proteins (the F393H mutant of cytochrome P450 BM3 and the oxygenase domain of endothelial nitric oxide synthase, eNOS) were studied under high pressure. For BM3, oxygen-binding characteristics (rate and activation volume) matched those measured for CO-binding. In contrast, pressure revealed a different CO- and oxygen-binding mechanism for eNOS, suggesting that it is hazardous to take CO-binding as a model for oxygen-binding. With eNOS, a ferric NO complex is formed as an intermediate in the second reaction cycle. Here we report the pressure stability of this compound. Furthermore, in the presence of 4-amino-tetrahydrobiopterin (ABH(4)), an analog to the natural second electron donor tetrahydrobiopterin (BH(4)), biphasic pressure profiles of the oxygen-binding rates were observed, both in the first and the second reaction cycles, indicative of the formation of an additional reaction intermediate. This was confirmed by experiments where ABH(4) was replaced by ABH(2), a cofactor which cannot deliver an electron. Altogether, high pressure appears to be a useful tool to characterize elementary steps in the reaction cycle of heme-thiolate proteins.  相似文献   

12.
Cytochrome P450 (CYP) enzymes constitute a superfamily of heme-containing monooxygenases. CYPs are involved in the metabolism of many chemicals such as drugs and agrochemicals. Therefore, examining the metabolic reactions by each CYP isoform is important to elucidate their substrate recognition mechanisms. The clarification of these mechanisms may be useful not only for the development of new drugs and agrochemicals, but also for risk assessment of chemicals. In our previous study, we identified the metabolites of tebufenozide, an insect growth regulator, formed by two human CYP isoforms: CYP3A4 and CYP2C19. The accessibility of each site of tebufenozide to the reaction center of CYP enzymes and the susceptibility of each hydrogen atom for metabolism by CYP enzymes were evaluated by a docking simulation and hydrogen atom abstraction energy estimation at the density functional theory level, respectively. In this study, the same in silico prediction method was applied to the metabolites of tebufenozide derivatives by major human CYPs (CYP1A2, 2C9, 2C19, 2D6, and 3A4). In addition, the production rate of the metabolites by CYP3A4 was quantitively analyzed by frequency based on docking simulation and hydrogen atom abstraction energy using the classical QSAR approach. Then, the obtained QSAR model was applied to predict the sites of metabolism and the metabolite production order by each CYP isoform.  相似文献   

13.
Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i.e., the olfactory organs used for perception of airborne defensive monoterpenes as well as other host-associated compounds and pheromones). We identified ten new CYP genes in the pine beetle Dendroctonus rhizophagus in either antennae or gut tissue after stimulation with the vapors of major host monoterpenes α-pinene, β-pinene and 3-carene. Five genes belong to the CYP4 family, four to the CYP6 family and one to the CYP9 family. Differential expression of almost all of the CYP genes was observed between sexes, and within these significant differences among time, stimuli, anatomical region, and their interactions were found upon exposure to host monoterpenes. Increased expression of cytochrome P450 genes suggests that they play a role in the detoxification of monoterpenes released by this insect's host trees.  相似文献   

14.
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

15.
16.
Protonation of the Ca2+ ligands of the SR Ca2+-ATPase (SERCA1a) was studied by a combination of rapid scan FTIR spectroscopy and electrostatic calculations. With FTIR spectroscopy, we investigated the pH dependence of CO bands of the Ca2+-free phosphoenzyme (E2P) and obtained direct experimental evidence for the protonation of carboxyl groups upon Ca2+ release. At least three of the infrared signals from protonated carboxyl groups of E2P are pH dependent with pKa values near 8.3: a band at 1758 cm−1 characteristic of nonhydrogen-bonded carbonyl groups, a shoulder at 1720 cm−1, and part of a band at 1710 cm−1, both characteristic of hydrogen-bonded carbonyl groups. The bands are thus assigned to H+ binding residues, some of which are involved in H+ countertransport. At pH 9, bands at 1743 and 1710 cm−1 remain which we do not attribute to Ca2+/H+ exchange. We also obtained evidence for a pH-dependent conformational change in β-sheet or turn structures of the ATPase. With MCCE on the E2P analog E2(), we assigned infrared bands to specific residues and analyzed whether or not the carbonyl groups of the acidic Ca2+ ligands are hydrogen bonded. The carbonyl groups of Glu771, Asp800, and Glu908 were found to be hydrogen bonded and will thus contribute to the lower wave number bands. The carbonyl group of some side-chain conformations of Asp800 is left without a hydrogen-bonding partner; they will therefore contribute to the higher wave number band.  相似文献   

17.
Here we show that several cell signaling inhibitors have effect on cyp1a1 expression and the metabolism of benzo[a]pyrene (B[a]P) in Hepa1c1c7 cells. The CYP1A1 inhibitor alpha-naphthoflavone (alpha-NF), the p53 inhibitor pifithrin-alpha (PFT-alpha), the ERK inhibitors PD98059 and U0126, and the p38 MAPK inhibitors SB202190 and PD169316 induced the expression and level of cyp1a1 protein. On the other hand, during the first h the inhibitors appeared to reduce the metabolism of B[a]P as measured by the generation of tetrols and by covalent binding of B[a]P to macromolecules. In contrast, the phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin, had neither an effect on the cyp1a1 expression nor the B[a]P-metabolism. In order to avoid these unspecific effects, we characterized the mechanisms involved in the apoptotic effects of B[a]P-metabolites. B[a]P and the B[a]P-metabolites B[a]P-7,8-DHD and BPDE-I induced apoptosis, whereas B[a]P-4,5-DHD had no effect. B[a]P, B[a]P-7,8-DHD and BPDE-I induced an accumulation and phosphorylation of p53, while the Bcl-2 proteins Bcl-xl, Bad and Bid were down-regulated. Interestingly, the levels of anti-apoptotic phospho-Bad were up-regulated in response to B[a]P as well as to B[a]P-7,8-DHD and BPDE-I. Both p38 MAPK and JNK were activated, but the p38 MAPK inhibitors were not able to inhibit BPDE-I-induced apoptosis. PFT-alpha reduced the BPDE-I-induced apoptosis, while both the PI-3 kinase inhibitor and the ERK inhibitors increased the apoptosis in combination with BPDE-I. BPDE-I also triggered apoptosis in primary cultures of rat lung cells. In conclusion, often used cell signaling inhibitors both enhanced the expression and the level of cyp1a1 and more directly acted as inhibitors of cyp1a1 metabolism of B[a]P. However, studies with the B[a]P-metabolite BPDE-I supported the previous suggestion that p53 has a role in the pro-apoptotic signaling pathway induced by B[a]P. Furthermore, these studies also show that the reactive metabolites of B[a]P induce the anti-apoptotic signals, Akt and ERK. Neither the induction nor the activity of p38 MAPK and JNK seems to be of major importance for the B[a]P-induced apoptosis.  相似文献   

18.
19.
20.
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets.This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号