首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.  相似文献   

2.
3.
A major endocytic pathway initiates with the formation of clathrin-coated vesicles (CCVs) that transport cargo from the cell surface to endosomes1-6. CCVs are distinguished by a polyhedral lattice of clathrin that coats the vesicle membrane and serves as a mechanical scaffold. Clathrin coats are assembled during vesicle formation from individual clathrin triskelia , the soluble form of clathrin composed of three heavy and three light chain subunits7,8. Because the triskelion does not have the ability to bind to the membrane directly, clathrin-binding adaptors are critical to link the forming clathrin lattice to the membrane through association with lipids and/or membrane proteins9. Adaptors also package transmembrane protein cargo, such as receptors, and can interact with each other and with other components of the CCV formation machinery9.Over twenty clathrin adaptors have been described, several are involved in clathrin mediated endocytosis and others localize to the trans Golgi network or endosomes9. With the exception of HIP1R (yeast Sla2p), all known clathrin adaptors bind to the N-terminal -propeller domain of the clathrin heavy chain9. Clathrin adaptors are modular proteins consisting of folded domains connected by unstructured flexible linkers. Within these linker regions, short binding motifs mediate interactions with the clathrin N-terminal domain or other components of the vesicle formation machinery9. Two distinct clathrin-binding motifs have been defined: the clathrin-box and the W-box9. The consensus clathrin-box sequence was originally defined as L[L/I][D/E/N][L/F][D/E]10 but variants have been subsequently discovered11. The W-box conforms to the sequence PWxxW (where x is any residue).Sla1p (Synthetic Lethal with Actin binding protein-1) was originally identified as an actin associated protein and is necessary for normal actin cytoskeleton structure and dynamics at endocytic sites in yeast cells12. Sla1p also binds the NPFxD endocytic sorting signal and is critical for endocytosis of cargo bearing the NPFxD signal13,14. More recently, Sla1p was demonstrated to bind clathrin through a motif similar to the clathrin box, LLDLQ, termed a variant clathrin-box (vCB), and to function as an endocytic clathrin adaptor15. In addition, Sla1p has become a widely used marker for the endocytic coat in live cell fluorescence microscopy studies16. Here we use Sla1p as a model to describe approaches for adaptor-clathrin interaction studies. We focus on live cell fluorescence microscopy, GST-pull down, and co-immunoprecipitation methods.Download video file.(108M, mov)  相似文献   

4.
5.
It is estimated that half of all proteins expressed in eukaryotic cells are transferred across or into at least one cellular membrane to reach their functional location. Protein translocation into the endoplasmic reticulum (ER) is critical to the subsequent localization of secretory and transmembrane proteins. A vital component of the translocation machinery is the signal peptidase complex (SPC) - which is conserved from yeast to mammals – and functions to cleave the signal peptide sequence (SP) of secretory and membrane proteins entering the ER. Failure to cleave the SP, due to mutations that abolish the cleavage site or reduce SPC function, leads to the accumulation of uncleaved proteins in the ER that cannot be properly localized resulting in a wide range of defects depending on the protein(s) affected. Despite the obvious importance of the SPC, in vivo studies investigating its function in a multicellular organism have not been reported. The Drosophila SPC comprises four proteins: Spase18/21, Spase22/23, Spase25 and Spase12. Spc1p, the S. cerevisiae homolog of Spase12, is not required for SPC function or viability; Drosophila spase12 null alleles, however, are embryonic lethal. The data presented herein show that spase12 LOF clones disrupt development of all tissues tested including the eye, wing, leg, and antenna. In the eye, spase12 LOF clones result in a disorganized eye, defective cell differentiation, ectopic interommatidial bristles, and variations in support cell size, shape, number, and distribution. In addition, spase12 mosaic tissue is susceptible to melanotic mass formation suggesting that spase12 LOF activates immune response pathways. Together these data demonstrate that spase12 is an essential gene in Drosophila where it functions to mediate cell differentiation and development. This work represents the first reported in vivo analysis of a SPC component in a multicellular organism.  相似文献   

6.
As one of the major hydrolases in Drosophila, trehalase (Treh) catalyzes the hydrolysis of trehalose into glucose providing energy for flight muscle activity. Treh is highly conserved from bacteria to humans, but little is known about its function during animal development. Here, we analyze the function of Treh in Drosophila optic lobe development. In the optic lobe, neuroepithelial cells (NEs) first divide symmetrically to expand the stem cell pool and then differentiate into neuroblasts, which divide asymmetrically to generate medulla neurons. We find that the knockdown of Treh leads to a loss of the lamina and a smaller medulla. Analyses of Treh RNAi-expressing clones and loss-of-function mutants indicate that the lamina and medulla phenotypes result from neuroepithelial disintegration and premature differentiation into medulla neuroblasts. Although the principal role of Treh is to generate glucose, the Treh loss-of-function phenotype cannot be rescued by exogenous glucose. Thus, our results indicate that in addition to being a hydrolase, Treh plays a role in neuroepithelial stem cell maintenance and differentiation during Drosophila optic lobe development.  相似文献   

7.
8.
Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances. To better understand the mechanism of parasite elimination in vivo, we monitored the dynamics of CD8+ T cells in the livers of naïve, immunized and sporozoite-infected mice by intravital microscopy. We found that immunization of BALB/c mice with attenuated P. yoelii 17XNL sporozoites significantly increases the velocity of CD8+ T cells patrolling the hepatic microvasculature from 2.69±0.34 μm/min in naïve mice to 5.74±0.66 μm/min, 9.26±0.92 μm/min, and 7.11±0.73 μm/min in mice immunized with irradiated, early genetically attenuated (Pyuis4-deficient), and late genetically attenuated (Pyfabb/f-deficient) parasites, respectively. Sporozoite infection of immunized mice revealed a 97% and 63% reduction in liver stage density and volume, respectively, compared to naïve controls. To examine cellular mechanisms of immunity in situ, naïve mice were passively immunized with hepatic or splenic CD8+ T cells. Unexpectedly, adoptive transfer rendered the motile CD8+ T cells from immunized mice immotile in the liver of P. yoelii infected mice. Similarly, when mice were simultaneously inoculated with viable sporozoites and CD8+ T cells, velocities 18 h later were also significantly reduced to 0.68±0.10 μm/min, 1.53±0.22 μm/min, and 1.06±0.26 μm/min for CD8+ T cells from mice immunized with irradiated wild type sporozoites, Pyfabb/f-deficient parasites, and P. yoelii CS280–288 peptide, respectively. Because immobilized CD8+ T cells are unable to make contact with infected hepatocytes, soluble mediators could potentially play a key role in parasite elimination under these experimental conditions.  相似文献   

9.

Background

Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro.

Methods and Findings

To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene.

Conclusion

VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates.  相似文献   

10.
11.
The chronic nature of many diseases is attributed to the formation of bacterial biofilms which are recalcitrant to traditional antibiotic therapy. Biofilms are community-associated bacteria attached to a surface and encased in a matrix. The role of the extracellular matrix is multifaceted, including facilitating nutrient acquisition, and offers significant protection against environmental stresses (e.g. host immune responses). In an effort to acquire a better understanding as to how the bacteria within a biofilm respond to environmental stresses we have used a protocol wherein we visualize bacterial biofilms which have formed in an 8-well chamber slide. The biofilms were stained with the BacLight Live/Dead stain and examined using a confocal microscope to characterize the relative biofilm size, and structure under varying incubation conditions. Z-stack images were collected via confocal microscopy and analyzed by COMSTAT. This protocol can be used to help elucidate the mechanism and kinetics by which biofilms form, as well as identify components that are important to biofilm structure and stability.  相似文献   

12.
13.
The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development.The plasminogen cascade of serine proteases regulates both development and tumorigenesis in the mammary gland (1, 2). The ultimate effector in this cascade, plasminogen as its active form, plasmin, is mediated by an intricate cascade of plasminogen activators and protease inhibitors. Plasminogen-deficient mice exhibit significant defects in lactational competence and post-lactational mammary gland involution (2), the process by which the differentiated, lactating gland remodels after the cessation of lactation to a state approaching that of the non-pregnant animal. The effect of plasminogen loss is exacerbated after a round of pregnancy and lactation: plasminogen-null mammary glands have poorly developed secretory alveoli during lactation, and upon involution, never fully involute. Instead, the secretory alveoli fail to regress normally. Moreover, the stroma becomes fibrotic and is cleared incompletely of partially degraded epithelial basement membrane. Because plasminogen-deficient mice largely are unable to support a second round of pregnancy and lactation (2), this suggests that the involution defect is not overcome by activities of other proteases eventually. These studies establish plasminogen as a crucial protease in normal mammary gland biology.Plasminogen is synthesized in the liver and circulates as a zymogen through blood plasma to all vascularized tissues of the body. As this expression and circulation are constant, activation of the plasminogen cascade must be controlled locally to avoid rampant tissue proteolysis. Accordingly, plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA),2 tissue-type plasminogen activator (tPA), and plasma kallikrein (3). Though tPA and uPA are efficient and well characterized plasminogen activators, studies of mice singly as well as doubly targeted for deficiency of these plasminogen activators show they do not recapitulate the mammary gland phenotype of plasminogen deficiency (4). Instead, through use of variants of ecotin, a macromolecular inhibitor for serine proteases derived from Escherichia coli, we have previously suggested that the dominant plasminogen activator for mammary stromal involution is plasma kallikrein (PKal) (4).PKal, the activated form of the zymogen prekallikrein encoded by the Klkb1 gene, is an 80-kDa serine protease that also is synthesized in the liver and circulates in plasma at about 40-50 μg/ml. PKal participates in the contact activation system of intrinsic coagulation by activating high molecular weight kininogen into bradykinin (5-8). While plasma kallikrein is so-named due to its bradykinin-generating ability, it is in fact structurally and catalytically distinct from the large family of tissue kallikreins, which activate an alternate form of bradykinin from both high and low molecular weight kininogen (9). Moreover, PKal activates plasminogen into plasmin in vitro (3), albeit less efficiently than uPA and tPA.To determine the role of PKal in plasminogen activation in vivo in mammary gland involution, we used a variant of ecotin that was engineered to be highly specific for active PKal (10). This ecotin variant, named ecotin-PKal, inhibits plasminogen activation in vivo in a model of wound healing (11). In this study, we demonstrate that inhibition of PKal significantly delays mammary gland involution.  相似文献   

14.
15.
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MO(wnt8)) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MO(wnt8) also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.  相似文献   

16.
While screening a large collection of wild and laboratory yeast strains for their ability to attract Drosophila melanogaster adults, we noticed a large difference in fly preference for two nearly isogenic strains of Saccharomyces cerevisiae, BY4741 and BY4742. Using standard genetic analyses, we tracked the preference difference to the lack of mitochondria in the BY4742 strain used in the initial experiment. We used gas chromatography coupled with mass spectroscopy to examine the volatile compounds produced by BY4741 and the mitochondria-deficient BY4742, and found that they differed significantly. We observed that several ethyl esters are present at much higher levels in strains with mitochondria, even in fermentative conditions. We found that nitrogen levels in the substrate affect the production of these compounds, and that they are produced at the highest level by strains with mitochondria when fermenting natural fruit substrates. Collectively these observations demonstrate that core metabolic processes mediate the interaction between yeasts and insect vectors, and highlight the importance mitochondrial functions in yeast ecology.  相似文献   

17.
Candida albicans RHO1 is required for cell viability in vitro and in vivo   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, Rho1p plays an important role in cell wall integrity by regulating beta-1,3-glucan synthase, Pkc1p and the actin cytoskeleton. To determine the physiological role of Rho1p in the dimorphic fungus Candida albicans, the major human fungal pathogen, we constructed mutants that conditionally express Rho1p from the glucose-repressible phosphoenolpyruvate carboxykinase promoter (pPCK1). We examined the growth of these cells in a range of conditions. Depletion of Rho1p from yeast cells resulted in cell death, lysis, and aggregation. The Rho1p conditional mutant was inviable on 10% serum indicating that Rho1p was also required for hyphal viability. Furthermore, in a mouse model of systemic candidiasis, strains dependent on pPCK1-driven RHO1 expression failed to colonise the kidneys and establish disease, suggesting that the level of glucose in serum was sufficient to repress the pPCK1 and that Rho1p-depleted strains were inviable within the host. Therefore, Rho1p is essential for the viability of C. albicans in vitro and in vivo.  相似文献   

18.
Transfer-messenger RNA (tmRNA) and protein SmpB facilitate trans-translation, a quality-control process that tags truncated proteins with short peptides recognized by a number of proteases and recycles ribosomes stalled at the 3′ end of mRNA templates lacking stop codons. The tmRNA molecule is a hybrid of tRNA- and mRNA-like domains that are usually connected by four pseudoknots (pk1–pk4). Replacement of pk1 with a single-stranded RNA yields pk1L, a mutant tmRNA that tags truncated proteins very poorly in vitro but very efficiently in vivo. However, deletion of the whole pk1 is deleterious for protein tagging. In contrast, deletion of helix 4 yields Δh4, a fully functional tmRNA derivative containing a single hairpin instead of pk1. Further deletions in the pk1 segment yield two subclasses of mutant tmRNAs that are unable to tag truncated proteins, but some of them bind to stalled ribosomes. Our studies demonstrate that pk1 is not essential for tmRNA functions but contributes to the stability of the tmRNA structure. Our studies also indicate that the length of this RNA segment is critical for both tmRNA binding to the ribosome and resumption of translation.  相似文献   

19.
Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host‐induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in S. sclerotiorum. We selected the S. sclerotiorum Thioredoxin1 gene (SsTrx1) for our investigations as its expression is significantly induced during S. sclerotiorum infection. RNA interference‐induced silencing of SsTrx1 in S. sclerotiorum affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of SsTrx1 in promoting pathogenicity and oxidative stress tolerance of S. sclerotiorum. We next constructed an SsTrx1‐based host‐induced gene silencing (HIGS) vector and mobilized it into Arabidopsis thaliana (HIGS‐A) and Nicotiana benthamiana (HIGS‐N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of SsTrx1 increased under oxidative stress. Taken together, our results show that normal expression of SsTrx1 is crucial for pathogenicity and oxidative stress tolerance of S. sclerotiorum.  相似文献   

20.

Background

The family of RecQ DNA helicases plays an important role in the maintenance of genomic integrity. Mutations in three of the five known RecQ family members in humans, BLM, WRN and RecQ4, lead to disorders that are characterized by predisposition to cancer and premature aging.

Methodology/Principal Findings

To address the in vivo functions of Drosophila RecQ4 (dRecQ4), we generated mutant alleles of dRecQ4 using the targeted gene knock-out technique. Our data show that dRecQ4 mutants are homozygous lethal with defects in DNA replication, cell cycle progression and cell proliferation. Two sets of experiments suggest that dRecQ4 also plays a role in DNA double strand break repair. First, mutant animals exhibit sensitivity to gamma irradiation. Second, the efficiency of DsRed reconstitution via single strand annealing repair is significantly reduced in the dRecQ4 mutant animals. Rescue experiments further show that both the N-terminal domain and the helicase domain are essential to dRecQ4 function in vivo. The N-terminal domain is sufficient for the DNA repair function of dRecQ4.

Conclusions/Significance

Together, our results show that dRecQ4 is an essential gene that plays an important role in not only DNA replication but also DNA repair and cell cycle progression in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号