首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
3.
The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole‐animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal‐related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection.  相似文献   

4.
The nematode Caenorhabditis elegans is the simplest animal model available to study human disease. In this review, the worm homologues for the 58 human genes involved in lysosomal storage disorders and for 105 human genes associated with lysosomal function have been compiled. Most human genes had at least one worm homologue. In addition, the phenotypes of 147 mutants, in which these genes have been disrupted or knocked down, have been summarized and discussed. The phenotypic spectrum of worm models of lysosomal storage disorders varies from lethality to none obvious, with a large variety of intermediate phenotypes. The genetic power of C. elegans provides a means to identify genes involved in specific processes with relative ease. The overview of potential lysosomal phenotypes presented here might be used as a starting point for the phenotypic characterization of newly developed knock-out models or for the design of genetic screens selecting for loss or gain of suitable knock-out model phenotypes. Screens for genes involved in lysosomal biogenesis and function have been performed successfully resulting in the cup and glo mutants, but screens involving subtle phenotypes are likely to be difficult.  相似文献   

5.
  1. Download : Download high-res image (88KB)
  2. Download : Download full-size image
  相似文献   

6.
C. elegans is a powerful model system, in which genetic and molecular techniques are easily applicable. Until recently though, techniques that require direct access to cells and isolation of specific cell types, could not be applied in C. elegans. This limitation was due to the fact that tissues are confined within a pressurized cuticle which is not easily digested by treatment with enzymes and/or detergents. Based on early pioneer work by Laird Bloom, Christensen and colleagues 1 developed a robust method for culturing C. elegans embryonic cells in large scale. Eggs are isolated from gravid adults by treatment with bleach/NaOH and subsequently treated with chitinase to remove the eggshells. Embryonic cells are then dissociated by manual pipetting and plated onto substrate-covered glass in serum-enriched media. Within 24 hr of isolation cells begin to differentiate by changing morphology and by expressing cell specific markers. C. elegans cells cultured using this method survive for up 2 weeks in vitro and have been used for electrophysiological, immunochemical, and imaging analyses as well as they have been sorted and used for microarray profiling.  相似文献   

7.
The amenability of the nematode Caenorhabditis elegans for genetic analysis and other experimentation provides a powerful tool for studying host-pathogen interactions. Our current understanding of how C. elegans responds to pathogen challenges is in its infancy, but the discovery that the worm has inducible defence responses, which to some extent parallel those of other organisms, demonstrates the potential of this model organism for the study of innate immunity. Most progress in dissecting the C. elegans antimicrobial response has focused around signal transduction pathways and the expression of genes activated by the worm in response to microbial infections.  相似文献   

8.
Recently, pathogenicity models that involve the killing of the genetically tractable nematode Caenorhabditis elegans by human pathogens have been developed. From the perspective of the pathogen, the advantage of these models is that thousands of mutagenized bacterial clones can be individually screened for avirulent mutants on separate petri plates seeded with C. elegans. The advantages of using C. elegans to study host responses to pathogen attack are the extensive genetic and genomic resources available and the relative ease of identifying C. elegans mutants that exhibit altered susceptibility to pathogen attack. The use of Caenorhabditis elegans as the host for a variety of human pathogens is discussed.  相似文献   

9.
Human embryonic stem cells (hESC) have demonstrated the ability to restore the injured myocardium. Magnetic resonance imaging (MRI) has emerged as one of the predominant imaging modalities to assess the restoration of the injured myocardium. Furthermore, ex-vivo labeling agents, such as iron-oxide nanoparticles, have been employed to track and localize the transplanted stem cells. However, this method does not monitor a fundamental cellular biology property regarding the viability of transplanted cells. It has been known that manganese chloride (MnCl2) enters the cells via voltage-gated calcium (Ca2+) channels when the cells are biologically active, and accumulates intracellularly to generate T1 shortening effect. Therefore, we suggest that manganese-guided MRI can be useful to monitor cell viability after the transplantation of hESC into the myocardium.In this video, we will show how to label hESC with MnCl2 and how those cells can be clearly seen by using MRI in vitro. At the same time, biological activity of Ca2+-channels will be modulated utilizing both Ca2+-channel agonist and antagonist to evaluate concomitant signal changes.Download video file.(69M, mov)  相似文献   

10.
11.
胚胎干细胞研究是20世纪90年代以来在生物医学领域中最引人注目的热点之一,而新近发展起来的RNA干扰技术,能快速有效地沉默基因表达,将成为胚胎干细胞生物学研究的得力工具。现对RNA干扰的作用机制,以及RNA干扰应用于胚胎干细胞研究的方法与RNA干扰在胚胎干细胞研究领域的进展作一综述,以期为今后这方面的研究提供参考。  相似文献   

12.
Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.  相似文献   

13.
For certain pathogens capable of infecting a broad range of organisms, there exist universal virulence factors, necessary for full pathogenicity regardless of the host. This has been most clearly demonstrated by Ausubel and colleagues for the human opportunistic pathogen Pseudomonas aeruginosa. As a consequence, one can use non-mammalian model systems, including the nematode worm Caenorhabditis elegans, to assay for such virulence factors. A significant number of pathogens of C. elegans, that provoke a range of diseases, are now known, including the opportunistic human pathogen Serratia marcescens. After explaining the practical advantages associated with the use of C. elegans, and briefly reviewing previous studies, the results of a screen for S. marcescens virulence factors will be presented.  相似文献   

14.
Primary bovine embryonic kidney cells frozen with dimethyl sulfoxide can be recultured with satisfactory results.  相似文献   

15.
The phylum Nematoda consists of over half a million species of worms that inhabit astoundingly diverse environments. Nematodes can live as obligatory parasites of plants and animals, or alternate a parasitic with a free-living life style. The fact that the vast majority of species are strictly free living often surprises parasitology students, for obviously the highest research priorities in this field have involved parasites of medical, veterinary and agricultural importance. Here Samuel Politz and Mario Philipp contend that some basic questions concerning the biology of the parasite cuticle can be investigated more easily and in greater depth in the free-living nematode Caenorhabditis elegans than in the parasites themselves.  相似文献   

16.
The authors cloned the cDNA of the nematode Caenorhabditis elegans encoding a 44-kDa protein (P-44), which is similar to sterol carrier protein x (SCPx). Genomic DNA data and Northern blot analysis excluded the possibility of P-44 forming SCPx-like fusion protein. P-44 is required in the formation of bile acid in vitro from CoA esters of their enoyl-form intermediate in the presence of d-3-hydroxyacyl-CoA dehydratase/d-3-dehydrogenase bifunctional protein. Also, rat SCPx converts 24-hydroxy-form intermediate to bile acid under similar conditions. From this and other evidence, P-44 and SCPx were categorized as type II thiolase. The mRNA encoding P-44 was detected in every developmental stage of C. elegans: egg, larval stages, and adult. P-44, therefore, seems essential for the normal functioning of this organism.  相似文献   

17.
An integrated gene network for Caenorhabditis elegans using data from multiple genome-wide screens encompasses most protein-coding genes and can accurately predict their phenotypes.  相似文献   

18.
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.KEY WORDS: Caenorhabditis elegans, Cell non-autonomous proteotoxicity, Prion-like spreading  相似文献   

19.
The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation by delaying anaphase onset until all sister kinetochores are attached to bipolar spindles. An RNA interference screen for synthetic genetic interactors with a conserved SAC gene, san-1/MAD3, identified spdl-1, a Caenorhabditis elegans homologue of Spindly. SPDL-1 protein localizes to the kinetochore from prometaphase to metaphase, and this depends on KNL-1, a highly conserved kinetochore protein, and CZW-1/ZW10, a component of the ROD–ZW10–ZWILCH complex. In two-cell–stage embryos harboring abnormal monopolar spindles, SPDL-1 is required to induce the SAC-dependent mitotic delay and localizes the SAC protein MDF-1/MAD1 to the kinetochore facing away from the spindle pole. In addition, SPDL-1 coimmunoprecipitates with MDF-1/MAD1 in vivo. These results suggest that SPDL-1 functions in a kinetochore receptor of MDF-1/MAD1 to induce SAC function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号