首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) NS5B protein is a membrane-associated phosphoprotein that possesses an RNA-dependent RNA polymerase activity. We recently reported that NS5A protein interacts with TRAF2 and modulates tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB and Jun N-terminal protein kinase (JNK). Since NS5A and NS5B are the essential components of the HCV replication complex, we examined whether NS5B could modulate TNF-alpha-induced NF-kappaB and JNK activation. In this study, we have demonstrated that TNF-alpha-induced NF-kappaB activation is inhibited by NS5B protein in HEK293 and hepatic cells. Furthermore, NS5B protein inhibited both TRAF2- and IKK-induced NF-kappaB activation. Using coimmunoprecipitation assays, we show that NS5B interacts with IKKalpha. Most importantly, NS5B protein in HCV subgenomic replicon cells interacted with endogenous IKKalpha, and then TNF-alpha-mediated IKKalpha kinase activation was significantly decreased by NS5B. Using in vitro kinase assay, we have further found that NS5B protein synergistically activated TNF-alpha-mediated JNK activity in HEK293 and hepatic cells. These data suggest that NS5B protein modulates TNF-alpha signaling pathways and may contribute to HCV pathogenesis.  相似文献   

2.
The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) is a phosphoprotein possessing various functions. We have previously reported that the HCV NS5A protein interacts with tumor necrosis factor (TNF) receptor-associated factor (TRAF) domain of TRAF2 (Park, K.-J., Choi, S.-H., Lee, S. Y., Hwang, S. B., and Lai, M. M. C. (2002) J. Biol. Chem. 277, 13122-13128). Both TNF-alpha- and TRAF2-mediated nuclear factor-kappaB (NF-kappaB) activations were inhibited by NS5A-TRAF2 interaction. Because TRAF2 is required for the activation of both NF-kappaB and c-Jun N-terminal kinase (JNK), we investigated HCV NS5A protein for its potential capacity to modulate TRAF2-mediated JNK activity. Using in vitro kinase assay, we have found that NS5A protein synergistically activated both TNF-alpha- and TRAF2-mediated JNK in human embryonic kidney 293T cells. Furthermore, synergism of NS5A-mediated JNK activation was inhibited by dominant-negative form of MEK kinase 1. Our in vivo binding data show that NS5A does not inhibit interaction between TNF receptor-associated death domain and TRAF2 protein, indicating that NS5A and TRAF2 may form a ternary complex with TNF receptor-associated death domain. These results indicate that HCV NS5A protein modulates TNF signaling of the host cells and may play a role in HCV pathogenesis.  相似文献   

3.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

4.
5.
The protein tyrosine kinase Pyk2 acts as an upstream regulator of mitogen-activated protein (MAP) kinase cascades in response to numerous extracellular signals. The precise molecular mechanisms by which Pyk2 activates distinct MAP kinase pathways are not yet fully understood. In this report, we provide evidence that the protein tyrosine kinase Src and adaptor proteins Grb2, Crk, and p130Cas act as downstream mediators of Pyk2 leading to the activation of extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK). Pyk2-induced activation of Src is necessary for phosphorylation of Shc and p130Cas and their association with Grb2 and Crk, respectively, and for the activation of ERK and JNK cascades. Expression of a Grb2 mutant with a deletion of the amino-terminal Src homology 3 domain or the carboxyl-terminal tail of Sos strongly reduced Pyk2-induced ERK activation, with no apparent effect on JNK activity. Grb2 with a deleted carboxyl-terminal Src homology 3 domain partially blocked Pyk2-induced ERK and JNK pathways, whereas expression of dominant interfering mutants of p130Cas or Crk specifically inhibited JNK but not ERK activation by Pyk2. Taken together, our data reveal specific pathways that couple Pyk2 with MAP kinases: the Grb2/Sos complex connects Pyk2 to the activation of ERK, whereas adaptor proteins p130Cas and Crk link Pyk2 with the JNK pathway.  相似文献   

6.
7.
To define the molecular mechanism(s) by which interleukin (IL)-4 reversibly inhibits formation of osteoclasts (OCs) from bone marrow macrophages (BMMs), we examined the capacity of this T cell-derived cytokine to impact signals known to modulate osteoclastogenesis, which include those initiated by macrophage colony-stimulating factor (M-CSF), receptor for activation of NF-kappa B ligand (RANKL), tumor necrosis factor (TNF), and IL-1. We find that although pretreatment of BMMs with IL-4 does not alter M-CSF signaling, it reversibly blocks RANKL-dependent activation of the NF-kappa B, JNK, p38, and ERK signals. IL-4 also selectively inhibits TNF signaling, while enhancing that of IL-1. Contrary to previous reports, we find that MEK inhibitors dose-dependently inhibit OC differentiation. To identify more proximal signals mediating inhibition of OC formation by IL-4, we used mice lacking STAT6 or SHIP1, two adapter proteins that bind the IL-4 receptor. IL-4 fails to inhibit RANKL/M-CSF-induced osteoclastogenesis by BMMs derived from STAT6-, but not SHIP1-, knockout mice. Consistent with this observation, the inhibitory effects of IL-4 on RANKL-induced NF-kappa B and mitogen-activated protein kinase activation are STAT6-dependent. We conclude that IL-4 reversibly arrests osteoclastogenesis in a STAT6-dependent manner by 1) preventing I kappa B phosphorylation and thus NF-kappa B activation, and 2) blockade of the JNK, p38, and ERK mitogen-activated protein kinase pathways.  相似文献   

8.
9.
10.
We have studied the roles of c-Jun N-terminal protein kinase (JNK) and extracellular signal-regulated protein kinase (ERK) cascade in both the cisplatin-resistant Caov-3 and the cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of both cells with cisplatin but not transplatin isomer activates JNK and ERK. Activation of JNK by cisplatin occurred at 30 min, reached a plateau at 3 h, and declined thereafter, whereas activation of ERK by cisplatin showed a biphasic pattern, indicating the different time frame. Activation of JNK by cisplatin was maximal at 1000 microM, whereas activation of ERK was maximal at 100 microM and was less at higher concentrations, indicating the different dose dependence. Cisplatin-induced JNK activation was neither extracellular and intracellular Ca(2+)- nor protein kinase C-dependent, whereas cisplatin-induced ERK activation was extracellular and intracellular Ca(2+)- dependent and protein kinase C-dependent. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, PD98059, had no effect on the cisplatin-induced JNK activity, suggesting an absence of cross-talk between the ERK and JNK cascades. We further examined the effect of each cascade on the viability following cisplatin treatment. Either exogenous expression of dominant negative c-Jun or the treatment by PD98059 induced sensitivity to cisplatin in both cells. Our findings suggest that cisplatin-induced DNA damage differentially activates JNK and ERK cascades and that inhibition of either of these cascades sensitizes ovarian cancer cells to cisplatin.  相似文献   

11.
12.
13.
Transforming growth factor-beta (TGF-beta) is implicated in the pathogenesis of liver disease. TGF-beta is involved both in liver regeneration and in the fibrotic and cirrhotic transformation with hepatitis viral infection. Hepatitis C virus (HCV) infection often leads to cirrhosis and hepatocellular carcinoma. HCV nonstructural 5A (NS5A) protein is a multifunctional protein that modulates cytokine-mediated signal transduction pathways. To elucidate the molecular mechanism of HCV pathogenesis, we examined the effect of NS5A protein on TGF-beta-stimulated signaling cascades. We show that NS5A protein inhibited the TGF-beta-mediated signaling pathway in hepatoma cell lines as determined by reporter gene assay. To further investigate the role of NS5A, we examined the protein/protein interaction between NS5A and TGF-beta signal transducers. Both in vitro and in vivo binding data showed that NS5A protein directly interacted with TGF-beta receptor I (TbetaR-I) in hepatoma cell lines. This interaction was mapped to amino acids 148-238 of NS5A. We also found that NS5A protein co-localized with TbetaR-I in the cytoplasm of Huh7 cells and inhibited TGF-beta-mediated nuclear translocation of Smad2. Furthermore, we demonstrate that NS5A protein abrogated the phosphorylation of Smad2 and the heterodimerization of Smad3 and Smad4. To further explore the relevance to viral infection, we examined the effect of the HCV subgenomic replicon on the TGF-beta signaling pathway. We show that the HCV subgenomic replicon also inhibited TGF-beta-induced signaling cascades. These results indicate that HCV NS5A modulates TGF-beta signaling through interaction with TbetaR-I and that NS5A may be an important risk factor in HCV-associated liver pathogenesis.  相似文献   

14.
MEKK1 binds raf-1 and the ERK2 cascade components   总被引:8,自引:0,他引:8  
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.  相似文献   

15.
16.
17.
Aberrant vascular smooth muscle cell (VSMC) growth is associated with many vascular diseases including atherosclerosis, hypertension, and restenosis. Platelet-derived growth factor-BB (PDGF) induces VSMC proliferation through control of cell cycle progression and protein and DNA synthesis. Multiple signaling cascades control VSMC growth, including members of the mitogen-activated protein kinase (MAPK) family as well as phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT/protein kinase B (PKB). Little is known about how these signals are integrated by mitogens and whether there are common receptor-proximal signaling control points that synchronize the execution of physiological growth functions. The nonreceptor proline-rich tyrosine kinase 2 (PYK2) is activated by a variety of growth factors and G protein receptor agonists in VSMC and lies upstream of both PI3K and MAPK cascades. The present study investigated the role of PYK2 in PDGF signaling in cultured rat aortic VSMC. PYK2 downregulation attenuated PDGF-dependent protein and DNA synthesis, which correlated with inhibition of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not p38 MAPK activation. Inhibition of PDGF-dependent protein kinase B (AKT) and ERK1/2 signaling by inhibitors of upstream kinases PI3K and MEK, respectively, as well as downregulation of PYK2 resulted in modulation of the G(1)/S phase of the cell cycle through inhibition of retinoblastoma protein (Rb) phosphorylation and cyclin D(1) expression, as well as p27(Kip) upregulation. Cell division kinase 2 (cdc2) phosphorylation at G(2)/M was also contingent on PDGF-dependent PI3K-AKT and ERK1/2 signaling. These data suggest that PYK2 is an important upstream mediator in PDGF-dependent signaling cascades that regulate VSMC proliferation.  相似文献   

18.
Hepatitis C virus (HCV) is a highly pathogenic human virus associated with liver fibrosis, steatosis, and cancer. In infected cells HCV induces oxidative stress. Here, we show that HCV proteins core, E1, E2, NS4B, and NS5A activate antioxidant defense Nrf2/ARE pathway via several independent mechanisms. This was demonstrated by the analysis of transient co-expression in Huh7 cells of HCV proteins and luciferase reporters. Expression, controlled by the promoters of stress-response genes or their minimal Nrf2-responsive elements, was studied using luminescence assay, RT-qPCR and/or Western-blot analysis. All five proteins induced Nrf2 activation by protein kinase C in response to accumulation of reactive oxygen species (ROS). In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 and phosphoinositide-3 kinase, whereas those of NS4B, E1, and E2, were not mediated by either PKC, CK2, PI3K, p38, or ERK. Altogether, on the earliest stage of expression HCV proteins induced a strong up-regulation of the antioxidant defense system. These events may underlie the harmful effects of HCV-induced oxidative stress during acute stage of hepatitis C.  相似文献   

19.
Hepatitis C virus (HCV) sets up a persistent infection in patients that likely involves a complex virus-host interaction. We previously found that the HCV nonstructural 5A (NS5A) protein interacts with growth factor receptor-binding protein 2 (Grb2) adaptor protein and inhibits the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by epidermal growth factor (EGF). In the present study, we extended this analysis and investigated the specificity of the Grb2-NS5A interaction and whether the subversion of mitogenic signaling involves additional pathways. NS5A containing mutations within the C-terminal proline-rich motif neither bound Grb2 nor inhibited ERK1/2 activation by EGF, demonstrating that NS5A-Grb2 binding and downstream effects were due to direct interactions. Interestingly, NS5A could also form a complex with the Grb2-associated binder 1 (Gab1) protein in an EGF treatment-dependent manner. However, the NS5A-Gab1 association, which appeared indirect, was not mediated by direct NS5A-Grb2 interaction but was likely dependent on direct NS5A interaction with the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The in vivo association of NS5A with p85 PI3K required the N-terminal, but not the C-terminal, region of NS5A. The downstream effects of the NS5A-p85 PI3K interaction included increased tyrosine phosphorylation of p85 PI3K in response to EGF. Consistent with this observation and the antiapoptotic properties of NS5A, we also detected enhanced tyrosine phosphorylation of the downstream AKT protein kinase and increased serine phosphorylation of BAD, a proapoptotic factor and an AKT substrate, in the presence of NS5A. These results collectively suggest a model in which NS5A interacts with Grb2 to inhibit mitogenic signaling while simultaneously promoting the PI3K-AKT cell survival pathway by interaction with p85 PI3K, which may represent a crucial step in HCV persistence and pathogenesis.  相似文献   

20.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号