首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.  相似文献   

2.
Variants of Neisseria gonorrhoeae MS11 show distinct colony morphologies because of the expression of a class of surface components called opacity (Opa, PII) proteins. Southern analyses combined with molecular cloning of genomic DNA from a single variant of MS11 has identified 11 opa genes contained in separate loci. These opa genes code for distinct opacity proteins which are distinguishable at their variable domains. The opa gene analyses were also extended to divergent variants of MS11. These studies have shown that, during in vitro and in vivo culture, 10 of the 11 opa genes did not undergo significant change in their primary sequence. However, in these variants, one gene (opaE) underwent non-reciprocal inter-opa recombinations to generate newer Opa variants. Phylogenic analysis of the opa gene sequences suggests that the opa gene family have evolved by a combination of gene duplication, gene replacement and partial inter-opa recombination events.  相似文献   

3.
Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, specificity for epithelial cells but instead confer interaction with human polymorphonuclear neutrophils (PMNs). Thus, depending on the opa allele expressed, gonococci are capable of invading epithelial cells or of interacting with human leukocytes. The respective properties of Opa proteins are maintained independent of the gonococcal strain; thus, the specificity for epithelial cells or leukocytes is intrinsic to Opa proteins. Significant homology exists in the surface exposed variable regions of two invasion supporting Opa proteins from independent strains. Efficient epithelial cell invasion is favoured by high level Opa production, however, a 10-fold reduction still allows significant invasion by gonococci. In contrast, recombinant Escherichia coli expressing Opa proteins adhered or invaded poorly under similar experimental conditions, thus indicating that additional factors besides Opa are required in the Opa-mediated interaction with human cells.  相似文献   

4.
5.
Using COS (African green monkey kidney) cells transfected with cDNAs encoding human cell surface molecules, we have identified human cellular receptors for meningococcal virulence-associated Opa proteins, which are expressed by the majority of disease and carrier isolates. These receptors belong to the immunoglobulin superfamily of adhesion molecules and are expressed on epithelial, endothelial and phagocytic cells. Using soluble chimeric receptor molecules, we have demonstrated that meningococcal Opa proteins bind to the N-terminal domain of biliary glycoproteins (classified as BGP or CD66a) that belong to the CEA (CD66) family. Moreover, the Opa proteins of the related pathogen Neisseria gonorrhoeae , responsible for urogenital infections, also interact with this receptor, making CD66a a common target for pathogenic neisseriae. Over 95% of Opa-expressing clinical and mucosal isolates of meningococci and gonococci were shown to bind to the CD66 N-domain, demonstrating the presence of a conserved receptor-binding function in the majority of neisserial Opa proteins.  相似文献   

6.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

7.
The Neisseria gonorrhoeae (the gonococcus [Gc]) opacity-associated (Opa) proteins mediate bacterial binding and internalization by human epithelial cells and neutrophils (polymorphonuclear leukocytes [PMNs]). Investigating the contribution of Opa proteins to gonococcal pathogenesis is complicated by high-frequency phase variation of the opa genes. We therefore engineered a derivative of Gc strain FA1090 in which all opa genes were deleted in frame, termed Opaless. Opaless Gc remained uniformly Opa negative (Opa), whereas cultures of predominantly Opa parental Gc and an intermediate lacking the “translucent” subset of opa genes (ΔopaBEGK) stochastically gave rise to Opa-positive (Opa+) bacterial colonies. Loss of Opa expression did not affect Gc growth. Opaless Gc survived exposure to primary human PMNs and suppressed the PMN oxidative burst akin to parental, Opa bacteria. Notably, unopsonized Opaless Gc was internalized by adherent, chemokine-primed, primary human PMNs, by an actin-dependent process. When a non-phase-variable, in-frame allele of FA1090 opaD was reintroduced into Opaless Gc, the bacteria induced the PMN oxidative burst, and OpaD+ Gc survived less well after exposure to PMNs compared to Opa bacteria. These derivatives provide a robust system for assessing the role of Opa proteins in Gc biology.  相似文献   

8.
Temporal relationship between viral and bacterial infections has been observed, and may arise via the action of virus-induced inflammatory cytokines. These, by upregulating epithelial receptors targeted by bacteria, may encourage greater bacterial infiltration. In this study, human epithelial cells exposed to interferon-gamma but not tumour necrosis factor-alpha or interleukin 1-beta supported increased meningococcal adhesion and invasion. The increase was related to Opa but not Opc or pili adhesin expression. De novo synthesis of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a major Opa receptor, occurred in epithelial cells exposed to the cytokine, or when infected with Opa-expressing bacteria. Cell line-dependent differences in invasion that were observed could be correlated with CEACAM expression levels. There was also evidence for Opa/pili synergism leading to high levels of monolayer infiltration by capsulate bacteria. The use of nuclear factor-kappa B (NFkappaB) inhibitors, diferuloylmethane (curcumin) and SN50, abrogated bacterial infiltration of both untreated and interferon-gamma-treated cells. The studies demonstrate the importance of CEACAMs as mediators of increased cellular invasion under conditions of inflammation and bring to light the potential role of NFkappaB pathway in Opa-mediated invasion by meningococci. The data imply that cell-surface remodelling by virally induced cytokines could be one factor that increases host susceptibility to bacterial infection.  相似文献   

9.

Background

The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa) proteins are expressed during infection and have a semivariable (SV) and highly conserved (4L) loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ablinear) and cyclic (Abcyclic) peptides that correspond to the SV and 4L loops and selected hypervariable (HV2) loops for surface-binding and protective activity in vitro and in vivo.

Methods/Findings

AbSV cyclic bound a greater number of different Opa variants than AbSV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. AbSV cyclic and AbHV2 cyclic, but not AbSV linear or AbHV2 linear agglutinated homologous Opa variants, and AbHV2BD cyclic but not AbHV2BD linear blocked the association of OpaB variants with human endocervical cells. Only AbHV2BD linear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of AbHV2BD linear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration.

Conclusions

We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.  相似文献   

10.
11.
Human neutrophil response to recombinant neisserial Opa proteins   总被引:13,自引:0,他引:13  
Interactions of human neutrophils with recombinant Escherichia coli expressing gonococcal outer membrane Opa proteins were examined using chemiluminescent and biological assays. Seven opa loci from Neisseria gonorrhoeae MS11 4.8 were expressed as beta-lactamase-Opa fusion proteins that contained all but the mature N-terminal amino acid of the full-length Opa protein fused to three N-terminal amino acids derived from the mature beta-lactamase. The Opa fusion proteins were exported and assembled in the outer membrane of E. coli in a manner similar to that of Opa in N. gonorrhoeae, as evaluated by antibody binding and in situ proteolytic cleavage. All fusion proteins exhibited the characteristic heat-modifiable migration in SDS-polyacrylamide gel electrophoresis that typifies Opa proteins of neisseriae. Opa fusion proteins conferred on E. coli the ability to stimulate a chemiluminescent response from human neutrophils in the absence of antibody or complement. The nature of the response in terms of chemiluminescence, phagocytosis, and killing was in all cases analogous to that seen using N. gonorrhoeae expressing the equivalent Opa protein. Neither E. coli nor gonococci expressing OpaA elicited a response from neutrophils. Use of E. coli expressing Opa fusions should be useful in defining their biological activities and pathogenic roles.  相似文献   

12.
The ability of all 11 variable opacity (Opa) proteins encoded by Neisseria gonorrhoeae MS11 to interact directly with the five CD66 antigens was determined. Transfected HeLa cell lines expressing individual CD66 antigens were infected with recombinant N. gonorrhoeae and Escherichia coli strains expressing defined Opas. Based upon the ability of these bacteria to bind and invade and to isolate specifically CD66 antigens from detergent-soluble extracts of the corresponding cell lines, distinct specificity groups of Opa interaction with CD66 were seen. Defining these specificity groups allowed us to assign a specific function for CD66a in the Opa-mediated interaction of gonococci with two different target cell types, which are both known to co-express multiple CD66 antigens. The competence of individual Opas to interact with CD66a was strictly correlated with their ability to induce an oxidative response by polymorphonuclear neutrophils. The same Opa specificity was observed for the level of gonococcal binding to primary endothelial cells after stimulation with TNFα, which was shown to increase the expression of CD66a rather than CD66e. As CD66e alone is expressed on other target tissues of gonococcal pathogenicity, Opa variation probably contributes to the cell tropism displayed by gonococci.  相似文献   

13.
14.
Previous studies have demonstrated the ability of an eicosapentaenoic acid (EPA)-derived endogenous cyclopentenone prostaglandin (CyPG) metabolite, Δ12-PGJ3, to selectively target leukemic stem cells, but not the normal hematopoietic stems cells, in in vitro and in vivo models of chronic myelogenous leukemia (CML). Here we evaluated the stability, bioavailability, and hypersensitivity of Δ12-PGJ3. The stability of Δ12-PGJ3 was evaluated under simulated conditions using artificial gastric and intestinal juice. The bioavailability of Δ12-PGJ3 in systemic circulation was demonstrated upon intraperitoneal injection into mice by LC-MS/MS. Δ12-PGJ3 being a downstream metabolite of PGD3 was tested in vitro using primary mouse bone marrow-derived mast cells (BMMCs) and in vivo mouse models for airway hypersensitivity. ZK118182, a synthetic PG analog with potent PGD2 receptor (DP)-agonist activity and a drug candidate in current clinical trials, was used for toxicological comparison. Δ12-PGJ3 was relatively more stable in simulated gastric juice than in simulated intestinal juice that followed first-order kinetics of degradation. Intraperitoneal injection into mice revealed that Δ12-PGJ3 was bioavailable and well absorbed into systemic circulation with a Cmax of 263 µg/L at 12 h. Treatment of BMMCs with ZK118182 for 12 h resulted in increased production of histamine, while Δ12-PGJ3 did not induce degranulation in BMMCs nor increase histamine. In addition, in vivo testing for hypersensitivity in mice showed that ZK118182 induces higher airways hyperresponsiveness when compared Δ12-PGJ3 and/or PBS control. Based on the stability studies, our data indicates that intraperitoneal route of administration of Δ12-PGJ3 was favorable than oral administration to achieve effective pharmacological levels in the plasma against leukemia. Δ12-PGJ3 failed to increase histamine and IL-4 in BMMCs, which is in agreement with reduced airway hyperresponsiveness in mice. In summary, our studies suggest Δ12-PGJ3 to be a promising bioactive metabolite for further evaluation as a potential drug candidate for treating CML.  相似文献   

15.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

16.
Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28–Spr3–Cdc3–Cdc10–Cdc10–Cdc3–Spr3–Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3–capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties.  相似文献   

17.
Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa.  相似文献   

18.
Several gram-negative human pathogens recognize members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Pathogenic Neisseriae employ distinct isoforms of the colony opacity-associated proteins (Opa(CEA) proteins) to bind to the amino-terminal domains of CEACAMs. Here we present a novel approach to rapidly determine the CEACAM-binding properties of single bacteria. Expression of the isolated amino-terminal domains of various CEACAMs in eukaryotic cells yields soluble probes that selectively recognize Opa(CEA)-expressing bacteria in a pull-down assay format. Furthermore, by expressing soluble CEACAMs as fusions to green-fluorescent protein (CEACAM-N-GFP), CEACAM-binding bacteria can be decorated with a fluorescent label and analysed by flow cytometry allowing the specific detection of receptor binding events on the level of single bacteria. Besides its potential for rapid and quantitative analysis of pathogen-receptor interactions, this novel approach allows the detection of receptor recognition in heterogeneous bacterial populations and might represent a valuable tool for profiling the host binding capabilities of various microorganisms.  相似文献   

19.
Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair.  相似文献   

20.
The protein tyrosine kinase ZAP-70 plays an important role in T-cell activation and development. After T-cell receptor stimulation, ZAP-70 associates with the receptor and is phosphorylated on many tyrosines, including Y292, Y315, and Y319 within interdomain B. Previously, we demonstrated that Y292 negatively regulates ZAP-70 function and that Y315 positively regulates ZAP-70 function by interacting with Vav. Recent studies have suggested that Y319 also positively regulate ZAP-70 function. Paradoxically, removal of interdomain B (to create the construct designated Δ), containing the Y292, Y315, and Y319 sites, did not eliminate the ability of ZAP-70 to induce multiple gene reporters in Syk-deficient DT-40 B cells and ZAP-70/Syk-deficient Jurkat cells. Here we show that Δ still utilizes the same pathways as wild-type ZAP-70 to mediate NF-AT induction. This is manifested by the ability of Δ to restore induction of calcium fluxes and mitogen-activated protein kinase activation and by the ability of dominant negative Ras and FK506 to block the induction of NF-AT activity mediated by Δ. Biochemically we show that the stimulated tyrosine phosphorylation of Vav, Shc, and ZAP-70 itself is diminished, whereas that of Slp-76 is increased in cells reconstituted with Δ. Deletion of interdomain B did not affect the ability of ZAP-70 to bind to the receptor. The in vitro kinase activity of ZAP-70 lacking interdomain B was markedly reduced, but the kinase activity was still required for the protein’s in vivo activity. Based on these data, we concluded that interdomain B regulates but is not required for ZAP-70 signaling function leading to cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号