首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid sequences are known to constantly mutate and diverge unless there is a limiting condition that makes such a change deleterious. However, closer examination of the sequence and structure reveals that a few large, cryptic repeats are nevertheless sequentially conserved. This leads to the question of why only certain repeats are conserved at the sequence level. It would be interesting to find out if these sequences maintain their conservation at the three-dimensional structure level. They can play an active role in protein and nucleotide stability, thus not only ensuring proper functioning but also potentiating malfunction and disease. Therefore, insights into any aspect of the repeats — be it structure, function or evolution — would prove to be of some importance. This study aims to address the relationship between protein sequence and its three-dimensional structure, by examining if large cryptic sequence repeats have the same structure.  相似文献   

2.
An increasing number of medically important proteins are challenging drug targets because their binding sites are too shallow or too polar, are cryptic and thus not detectable without a bound ligand or located in a protein–protein interface. While such proteins may not bind druglike small molecules with sufficiently high affinity, they are frequently druggable using novel therapeutic modalities. The need for such modalities can be determined by experimental or computational fragment based methods. Computational mapping by mixed solvent molecular dynamics simulations or the FTMap server can be used to determine binding hot spots. The strength and location of the hot spots provide very useful information for selecting potentially successful approaches to drug discovery.  相似文献   

3.
Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ~60 pN), as compared to the unfolding in the opposite direction (unfolding force ~ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo.  相似文献   

4.
The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ~35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the analysis of protein-protein interactions for chemical biology and molecular therapeutics.  相似文献   

5.
Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150-200 nucleotides at the 3′ end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.  相似文献   

6.
DNA molecules injected into the macronucleus of Paramecium primaurelia replicate either as free linear telomerized or chromosome integrated molecules. In the present study we show that when a 1.77 kb BamHI DNA fragment harbouring the his3 gene of Saccharomyces cerevisiae was microinjected into the macronucleus, a fraction of the molecules are integrated into the chromosome via an illegitimate recombination process. The injected molecules were mostly inserted at their extremities at multiple points in the genome by replacing the Paramecium sequences. However, insertion sites were not totally at random. Roughly 30% of the molecules were integrated next to or in telomeric repeats. These telomeric repeats were not at the extremities of chromosomes but occupy an internal or interstitial position. We argue that such sites are hotspots for integration as the probability of random insertion near or in an interstitial telomeric site, of which there are 25-60 in a macronucleus is between 5 x 10(-4) and 3 x 10(-5).  相似文献   

7.
Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.  相似文献   

8.
采用实验和理论化学研究相结合的方法研究分子间相互作用,这种在计算机上进行“模拟实验”与传统“有机化学实验”相辅相成的研究策略,正在成为有机化学研究的重要手段.本论文利用荧光光谱分析法来研究小分子有机化合物与蛋白底物之间的相互作用机制.利用先进的分子模拟软件,结合分子力学、量子力学和神经网络等方法与分子对接等理论化学手段,建立和优化相互作用的分子间形成复合物的空间构象,并且预测分子间相互作用的稳定性.用荧光光谱分析法对12种小分子有机化合物与DC-SIGN(DC-specific ICAM-3 grabbing nonintegrin)之间的相互作用进行了研究,结果与理论分子模型计算十分吻合.在这12种化合物中,1-脲基氨基甘露糖与DC-SIGN络合的效果最好.这一发现可能对研究新一代抗艾滋病药物有重要意义.  相似文献   

9.
Intriguing experimental and computational data are emerging to suggest that mechanical forces regulate the functional states of some proteins by stretching them into nonequilibrium states. Using the extracellular matrix protein fibronectin as an example, we discuss molecular design principles that might control the exposure of a protein's recognition sites, and/or their relative distances, in a force-dependent manner. Fibronectin regulates many cellular functions by binding directly to integrins. Although integrins have a key role in the transduction of force across the cell membrane by coupling the extracellular matrix to the cytoskeleton, the studies reviewed here suggest that fibronectin might be one of the molecules responsible for the initial transformation of mechanical force into a biochemical signal.  相似文献   

10.
R N Roy  N Bigelow  J A Dillon 《Plasmid》1988,19(1):39-45
A variant of the cryptic plasmid of Neisseria gonorrhoeae, 4.4 kb in size, was isolated and characterized at the molecular level. This variant harbored a 156-bp insertion which was located between coordinates 3134 and 3135 within the putative cppB gene using the 4.2-kb cryptic plasmid, pJD1, as a reference. The insertion contained a novel EcoRI site and several elements of symmetry (both direct and inverted repeats). Stop codons present in the insertion interrupted the coding capacity of the cppB gene. Although the insertion was within one of two previously characterized 44-bp repeats purportedly involved in site-specific recombination, it was distinct from a 54-bp segment deleted in some cryptic plasmids. The presence of the insertion suggests a mechanism of modulating the expression of the cppB gene at the translational level through DNA rearrangement.  相似文献   

11.
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.  相似文献   

12.
The structure of the termini of the DNA of Epstein-Barr virus.   总被引:39,自引:0,他引:39  
C R Kintner  B Sugden 《Cell》1979,17(3):661-671
We have studied the DNA of Epstein-Barr virus (EBV) isolated from the B95-8 strain of that virus (Miller and Lipman, 1973). When EBV DNA is partially digested with lambda-exonuclease and allowed to reanneal, up to 50% of the full-length molecules circularize. The arrangements of nucleotide sequences containing the terminal repeats identified in this circularization experiment have been determined. Those fragments of viral DNA generated by digestion with restriction endonucleases which are terminal and contain the terminal repeats have been identified by their sensitivity to digestion of full-length DNA by lambda-exonuclease and by virtue of their being partially homologous to one another. The population of DNA molecules in the B95-8 strain of EBV was found to be nonuniform. The nonuniformity results from different molecules having different numbers of a 0.37 megadalton terminal repeat at each end. About 70% of molecules have four terminal repeats at one end, while four equal classes, each comprising approximately 25% of the population, have one, two, three or four repeats at the other end. The arrangements of nucleotide sequences identified as being terminal in virion DNA were studied in the intracellular circular viral DNA of cells transformed by a single particle on EBV. All fragments produced by digestion with endonucleases and scored as being terminal in virion DNA were absent from intracellular circular DNA. An additional fragment was identified in the digests of intracellular DNA of each transformed clone. The molecular weights of the new fragments equal the sum of the molecular weights of two terminal fragments which are joined upon intracellular circularization of viral DNA.  相似文献   

13.
蒋爽  滕元文  宗宇  蔡丹英 《西北植物学报》2013,33(11):2354-2360
反转录转座子是真核生物基因组中普遍存在的一类可移动的遗传因子,它们以RNA为媒介,在基因组中不断自我复制。在高等植物中,反转录转座子是基因组的重要成分之一。反转录转座子可以分为5大类型,其中以长末端重复(LTR)类型报道较多。LTR类型由于其首尾具有长末端重复序列,内部含有PBS、PPT、GAG和POL开放阅读框、TSD等结构,可以采用生物信息学软件进行预测。LTR反转录转座子的活性受到自身甲基化和环境因素的影响,DNA甲基化抑制反转录转座子转座,而外界环境的刺激能够激活转座子,从而影响插入位点周边基因的表达。同时由于LTR反转录转座子在植物中普遍存在,丰富的拷贝数以及多态性为新型分子标记(RBIP、SSAP、IRAP、REMAP)的开发提供了良好的素材。该文对近年来国内外有关植物反转录转座子的类型、结构特征、 LTR反转录转座子的活性及其影响因素、 LTR反转录转座子的预测以及标记开发等方面的研究进展进行综述。  相似文献   

14.
Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon–intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.  相似文献   

15.
Modular proteins such as titin, fibronectin, and cadherin are ubiquitous components of living cells. Often involved in signaling and mechanical processes, their architecture is characterized by domains containing a variable number of heterogeneous “repeats” arranged in series, with either flexible or rigid linker regions that determine their elasticity. Cadherin repeats arranged in series are unique in that linker regions also feature calcium-binding motifs. While it is well known that the extracellular repeats of cadherin proteins mediate cell-cell adhesion in a calcium-dependent manner, the molecular mechanisms behind the influence of calcium in adhesion dynamics and cadherin's mechanical response are not well understood. Here we show, using molecular dynamics simulations, how calcium ions control the structural integrity of cadherin's linker regions, thereby affecting cadherin's equilibrium dynamics, the availability of key residues involved in cell-cell adhesion, and cadherin's mechanical response. The all-atom, multi-nanosecond molecular dynamics simulations involved the entire C-cadherin extracellular domain solvated in water (a 345,000 atom system). Equilibrium simulations show that the extracellular domain maintains its crystal conformation (elongated and slightly curved) when calcium ions are present. In the absence of calcium ions, however, it assumes a disordered conformation. The conserved residue Trp2, which is thought to insert itself into a hydrophobic pocket of another cadherin molecule (thereby providing the basis for cell-cell adhesion), switches conformation from exposed to intermittently buried upon removal of calcium ions. Furthermore, the overall mechanical response of C-cadherin's extracellular domain is characterized at low force by changes in shape (tertiary structure elasticity), and at high force by unraveling of secondary structure elements (secondary structure elasticity). This mechanical response is modulated by calcium ions at both low and high force, switching from a stiff, rod-like to a soft, spring-like behavior upon removal of ions. The simulations provide an unprecedented molecular view of calcium-mediated allostery in cadherins, also illustrating the general principles of linker-mediated elasticity of modular proteins relevant not only for cell-cell adhesion and sound transduction, but also muscle elasticity.  相似文献   

16.
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.  相似文献   

17.
During inflammation, selectin-ligand interactions provide forces for circulating leukocytes to adhere to vascular surfaces, which stretch the interacting molecules, suggesting that mechanical properties may be pertinent to their biological function. From mechanical measurements with atomic force microscopy, we analyzed the molecular characteristics of selectins complexed with ligands and antibodies. Respective stiffness of L-, E-, and P-selectins (4.2, 1.4, and 0.85 piconewton/nm) correlated inversely with the number (2, 6, and 9) of consensus repeats in the selectin structures that acted as springs in series to dominate their compliance. After reconstitution into a lipid bilayer, purified membrane P-selectin remained a dimer, capable of forming dimeric bonds with P-selectin glycoprotein ligand (PSGL)-1, endoglycan-Ig, and a dimeric form of a glycosulfopeptide modeled after the N terminus of PSGL-1. By comparison, purified membrane L- and E-selectin formed only monomeric bonds under identical conditions. Ligands and antibodies were much less stretchable than selectins. The length of endoglycan-Ig was found to be 51 ± 12 nm. These results provide a comprehensive characterization of the molecular stiffness of selectins and illustrate how mechanical measurements can be utilized for molecular analysis, e.g. evaluating the multimericity of selectins and determining the molecular length of endoglycan.  相似文献   

18.
Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats   总被引:4,自引:0,他引:4  
A number of human hereditary diseases have been associated with the instability of DNA repeats in the genome. Recently, spinocerebellar ataxia type 10 has been associated with expansion of the pentanucleotide repeat (ATTCT)(n).(AGAAT)(n) from a normal range of ten to 22 to as many as 4500 copies. The structural properties of this repeat cloned in circular plasmids were studied by a variety of methods. Two-dimensional gel electrophoresis and atomic force microscopy detected local DNA unpairing in supercoiled plasmids. Chemical probing analysis indicated that, at moderate superhelical densities, the (ATTCT)(n).(AGAAT)(n) repeat forms an unpaired region, which further extends into adjacent A+T-rich flanking sequences at higher superhelical densities. The superhelical energy required to initiate duplex unpairing is essentially length-independent from eight to 46 repeats. In plasmids containing five repeats, minimal unpairing of (ATTCT)(5).(AGAAT)(5) occurred while 2D gel analysis and chemical probing indicate greater unpairing in A+T-rich sequences in other regions of the plasmid. The observed experimental results are consistent with a statistical mechanical, computational analysis of these supercoiled plasmids. For plasmids containing 29 repeats, which is just above the normal human size range, flanked by an A+T-rich sequence, atomic force microscopy detected the formation of a locally condensed structure at high superhelical densities. However, even at high superhelical densities, DNA strands within the presumably compact A+T-rich region were accessible to small chemicals and oligonucleotide hybridization. Thus, DNA strands in this "collapsed structure" remain unpaired and accessible for interaction with other molecules. The unpaired DNA structure functioned as an aberrant replication origin, in that it supported complete plasmid replication in a HeLa cell extract. A model is proposed in which unscheduled or aberrant DNA replication is a critical step in the expansion mutation.  相似文献   

19.
It is now well established that cells can sense mechanical force, but the mechanisms by which force is transduced into a biochemical signal remain poorly understood. One example is the recruitment of vinculin to reinforce initial contacts between a cell and the extracellular matrix (ECM) due to tensile force. Talin, an essential linking protein in an initial contact, contains at least one vinculin-binding site (VBS) that is cryptic and inactive in the native state. The N-terminal five-helix bundle of talin rod is a stable structure with a known cryptic VBS1. The perturbation of this stable structure through elevated temperature or destabilizing mutation activates vinculin binding. Although the disruption of this subdomain by transmitted mechanical force is a potential cue for the force-induced focal adhesion strengthening, the molecular basis for this mechanism remains elusive. Here, molecular dynamics (MD) is employed to demonstrate a force-induced conformational change that exposes the cryptic vinculin-binding residues of VBS1 to solvent under applied force along a realistic pulling direction. VBS1 undergoes a rotation of 62.0 +/- 9.5 degrees relative to its native state as its vinculin-binding residues are released from the tight hydrophobic core. Charged and polar residues on the VBS1 surface are the site of force transmission that strongly interact with an adjacent alpha-helix, and in effect, apply torque to the VBS1 to cause its rotation. Activation was observed with mean force of 13.2 +/-8.0 pN during constant velocity simulation and with steady force greater than 18.0 pN.  相似文献   

20.
Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号