首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

FUS/TLS (fused in sarcoma/translocated in liposarcoma) encodes a multifunctional DNA/RNA binding protein with non-classical carboxy (C)-terminal nuclear localization signal (NLS). A variety of ALS-linked mutations are clustered in the C-terminal NLS, resulting in the cytoplasmic mislocalization and aggregation. Since the arginine methylations are implicated in the nuclear-cytoplasmic shuttling of FUS, a methylation inhibitor could be one of therapeutic targets for FUS-linked ALS. We here examined effects of methylation inhibitors on the cytoplasmic mislocalization and aggregates of ALS-linked C-terminal FUS mutant in a cell culture system. Treatment with adenosine dialdehyde (AdOx), a representative global methyltransferase inhibitor, remarkably mitigated the cytoplasmic mislocalization and aggregation of FUS mutant, which is consistent with previous reports. However, AdOx treatment of higher concentration and longer time period evoked the intranuclear aggregation of the ectopic expressed FUS protein. The pull down assay and the morphological analysis indicated the binding between FUS and Transportin could be potentiated by AdOx treatment through modulating methylation status in RGG domains of FUS. These findings indicated the treatment with a methylation inhibitor at the appropriate levels could alleviate the cytoplasmic mislocalization but in excess this could cause the intranuclear aggregation of FUS C-terminal mutant.

  相似文献   

2.
3.
Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.  相似文献   

4.
5.
6.
7.
Viral proteins are known to be methylated by host protein arginine methyltransferases (PRMTs) necessary for the viral life cycle, but it remains unknown whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins are methylated. Herein, we show that PRMT1 methylates SARS-CoV-2 nucleocapsid (N) protein at residues R95 and R177 within RGG/RG motifs, preferred PRMT target sequences. We confirmed arginine methylation of N protein by immunoblotting viral proteins extracted from SARS-CoV-2 virions isolated from cell culture. Type I PRMT inhibitor (MS023) or substitution of R95 or R177 with lysine inhibited interaction of N protein with the 5’-UTR of SARS-CoV-2 genomic RNA, a property required for viral packaging. We also defined the N protein interactome in HEK293 cells, which identified PRMT1 and many of its RGG/RG substrates, including the known interacting protein G3BP1 as well as other components of stress granules (SGs), which are part of the host antiviral response. Methylation of R95 regulated the ability of N protein to suppress the formation of SGs, as R95K substitution or MS023 treatment blocked N-mediated suppression of SGs. Also, the coexpression of methylarginine reader Tudor domain-containing protein 3 quenched N protein–mediated suppression of SGs in a dose-dependent manner. Finally, pretreatment of VeroE6 cells with MS023 significantly reduced SARS-CoV-2 replication. Because type I PRMT inhibitors are already undergoing clinical trials for cancer treatment, inhibiting arginine methylation to target the later stages of the viral life cycle such as viral genome packaging and assembly of virions may represent an additional therapeutic application of these drugs.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a late onset and progressive motor neuron disease. Mutations in the gene coding for fused in sarcoma/translocated in liposarcoma (FUS) are responsible for some cases of both familial and sporadic forms of ALS. The mechanism through which mutations of FUS result in motor neuron degeneration and loss is not known. FUS belongs to the family of TET proteins, which are regulated at the post-translational level by arginine methylation. Here, we investigated the impact of arginine methylation in the pathogenesis of FUS-related ALS. We found that wild type FUS (FUS-WT) specifically interacts with protein arginine methyltransferases 1 and 8 (PRMT1 and PRMT8) and undergoes asymmetric dimethylation in cultured cells. ALS-causing FUS mutants retained the ability to interact with both PRMT1 and PRMT8 and undergo asymmetric dimethylation similar to FUS-WT. Importantly, PRMT1 and PRMT8 localized to mutant FUS-positive inclusion bodies. Pharmacologic inhibition of PRMT1 and PRMT8 activity reduced both the nuclear and cytoplasmic accumulation of FUS-WT and ALS-associated FUS mutants in motor neuron-derived cells and in cells obtained from an ALS patient carrying the R518G mutation. Genetic ablation of the fly homologue of human PRMT1 (DART1) exacerbated the neurodegeneration induced by overexpression of FUS-WT and R521H FUS mutant in a Drosophila model of FUS-related ALS. These results support a role for arginine methylation in the pathogenesis of FUS-related ALS.  相似文献   

9.
Protein N-arginine methyltransferase (PRMT)1 catalyzes arginine methylation in a variety of substrates, although the potential role of PRMT1 in insulin action has not been defined. We therefore investigated the effect of PRMT1-mediated methylation on insulin signaling and glucose uptake in skeletal L6 myotubes. Exposure of L6 myotubes to insulin rapidly induced translocation of PRMT1 and increased its catalytic activity in membrane fraction. Several proteins in the membrane fraction were arginine-methylated after insulin treatment, which were inhibited by pretreatment with an inhibitor of methyltransferase, 5′-deoxy-5′-(methylthio)adenosine (MTA), or a small interfering RNA against PRMT1 (PRMT1-siRNA). Inhibition of arginine methylation with MTA or PRMT1-siRNA diminished later phase of insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) β and IRS-1, association of IRS-1 with p85α subunit of PI3-K, and glucose uptake. Our results suggest that PRMT1-mediated methylation serves as a positive modulator of IR/IRS-1/PI3-K pathway and subsequent glucose uptake in skeletal muscle cells.  相似文献   

10.
Recent studies reported that protein arginine methyltransferase 6 (PRMT6) enhances estrogen-induced activity of estrogen receptor α (ERα) and dysfunction of PRMT6 is associated with overall better survival for ERα-positive breast cancer patients. However, it is unclear how PRMT6 promotes ERα activity. Here we report that PRMT6 specifically interacts with ERα at its ligand-binding domain. PRMT6 also methylates ERα both in vitro and in vivo. In addition to enhancing estrogen-induced ERα activity, PRMT6 over-expression up-regulates estrogen-independent activity of ERα and PRMT6 gene silencing in MCF7 cells inhibits ligand-independent ERα activation. More interestingly, the effect of PRMT6 on the ligand-independent ERα activity does not require its methyltransferase activity. Instead, PRMT6 competes with Hsp90 for ERα binding: PRMT6 and Hsp90 bindings to ERα are mutually exclusive and PRMT6 over-expression reduces ERα interaction with Hsp90. In conclusion, PRMT6 requires its methyltransferase activity to enhance ERα's ligand-induced activity, but its effect on ligand-independent activity is likely mediated through competing with Hsp90 for binding to the C-terminal domain of ERα. PRMT6-ERα interaction would prevent ERα-Hsp90 association. Since Hsp90 and associated chaperones serve to maintain ERα conformation for ligand-binding yet functionally inactive, inhibition of ERα-Hsp90 interaction would relieve ERα from the constraint of chaperone complex.  相似文献   

11.
Protein arginine methylation regulates a broad array of cellular processes. SERBP1 implicated in tumor progression through its putative involvement in the plaminogen activator protease cascade, is an RNA-binding protein containing an RG-rich domain and an RGG box domain that might be methylated by protein arginine N-methyltransferases (PRMTs). Asymmetric dimethylarginine (aDMA) was detected in SERBP1 and an indirect methyltransferase inhibitor adenosine dialdehyde (AdOx) significantly reduced the methylation signals. Arginines in the middle RG and C-terminal RGG region of SERBP1 are methylated based on the analyses of different deletion constructs. The predominant type I protein arginine methyltransferase PRMT1 co-immunoprecipitated with SERBP1 and the level of bound PRMT1 decreased upon the addition of AdOx. Recombinant PRMT1 methylated SERBP1 and knockdown of PRMT1 significantly reduced the aDMA level of SERBP1, indicating that SERBP1 is specifically methylated by PRMT1. Immunofluorescent analyses of endogenous SERBP1 showed predominant cytoplasmic localization of SERBP1. Treatment of AdOx or PRMT1 siRNA increased the nuclear localization of SERBP1. Analyses of different deletions indicated that the middle RG region is important for the nuclear localization while both N- and C- terminus are required for nuclear export. Low methylation of the C-terminal RGG region also favors nuclear localization. In conclusion, the RG-rich and RGG box of SERBP1 is asymmetrically dimethylated by PRMT1 and the modification affects protein interaction and intracellular localization of the protein. These findings provide the basis for dissecting the roles of SERBP1.  相似文献   

12.
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.  相似文献   

13.
14.
15.
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.  相似文献   

16.
In amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, TAR DNA binding protein 43 (TDP-43) accumulates in the cytoplasm of affected neurons and glia, where it associates with stress granules (SGs) and forms large inclusions. SGs form in response to cellular stress, including endoplasmic reticulum (ER) stress, which is induced in both familial and sporadic forms of ALS. Here we demonstrate that pharmacological induction of ER stress causes TDP-43 to accumulate in the cytoplasm, where TDP-43 also associates with SGs. Furthermore, treatment with salubrinal, an inhibitor of dephosphorylation of eukaryotic initiation factor 2-α, a key modulator of ER stress, potentiates ER stress-mediated SG formation. Inclusions of C-terminal fragment TDP-43, reminiscent of disease-pathology, form in close association with ER and Golgi compartments, further indicating the involvement of ER dysfunction in TDP-43-associated disease. Consistent with this notion, over-expression of ALS-linked mutant TDP-43, and to a lesser extent wildtype TDP-43, triggers several ER stress pathways in neuroblastoma cells. Similarly, we found an interaction between the ER chaperone protein disulphide isomerase and TDP-43 in transfected cell lysates and in the spinal cords of mutant A315T TDP-43 transgenic mice. This study provides evidence for ER stress as a pathogenic pathway in TDP-43-mediated disease.  相似文献   

17.
18.
Protein arginine methylation plays a critical role in differential gene expression through modulating protein-protein and protein-DNA/RNA interactions. Although numerous proteins undergo arginine methylation, only limited information is available on how protein arginine methyltransferases (PRMTs) identify their substrates. The human PRMT5 complex consists of PRMT5, WD45/MEP50 (WD repeat domain 45/methylosome protein 50), and pICln and catalyzes the symmetrical arginine dimethylation of its substrate proteins. pICln recruits the spliceosomal Sm proteins to the PRMT5 complex for methylation, which allows their subsequent loading onto snRNA to form small nuclear ribonucleoproteins. To understand how the PRMT5 complex is regulated, we investigated its biochemical composition and identified RioK1 as a novel, stoichiometric component of the PRMT5 complex. We show that RioK1 and pICln bind to PRMT5 in a mutually exclusive fashion. This results in a PRMT5-WD45/MEP50 core structure that either associates with pICln or RioK1 in distinct complexes. Furthermore, we show that RioK1 functions in analogy to pICln as an adapter protein by recruiting the RNA-binding protein nucleolin to the PRMT5 complex for its symmetrical methylation. The exclusive interaction of PRMT5 with either pICln or RioK1 thus provides the first mechanistic insight into how a methyltransferase can distinguish between its substrate proteins.  相似文献   

19.
The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1–20) and H4(1–20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号