首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetraprolin (TTP). Res increased TTP expression in U87MG human glioma cells. Res-induced TTP destabilized the urokinase plasminogen activator and urokinase plasminogen activator receptor mRNAs by binding to the ARE regions containing the 3′ untranslated regions of their mRNAs. Furthermore, TTP induced by Res suppressed cell growth and induced apoptosis in the human glioma cells. Because of its regulation of TTP expression, these findings suggest that the bioactive dietary compound Res can be used as a novel anti-cancer agent for the treatment of human malignant gliomas.  相似文献   

2.
The widely-expressed molecular chaperone heat shock protein 90 (Hsp90) regulates several important cellular processes via its’ repertoire of ‘client’ proteins. Signal transduction pathways controlled by Hsp90 contribute to all major components of the malignant phenotype, so Hsp90 inhibitors are under investigation as anticancer agents. Since Hsp90 is also expressed at high levels in many normal tissues, it was unclear why Hsp90 inhibitors such as 17-allylamino-geldanamycin (17-AAG) have selective antitumor activity in animals and are well tolerated clinically. Recent findings indicate that Hsp90 is largely latent in unstressed normal cells, but tumor Hsp90 becomes completely utilized during malignant progression, resulting in an activation-dependent conformational shift that radically increases 17-AAG binding affinity in cancer cells. In this article, the implications of this discovery are discussed, with particular reference to cell cycle regulation in normal and malignant cells, and the consequences of inducing cell cycle arrest with Hsp90 inhibitors.  相似文献   

3.
4.
5.
冠状病毒是一大类能够引起呼吸系统疾病,从而威胁人类健康的病毒.目前,对冠状病毒诱导细胞凋亡及其机制研究甚少.本研究以动物冠状病毒 猪流行性腹泻病毒(PEDV) 为模型探讨冠状病毒诱导细胞凋亡效应及其可能作用机制. 通过流式细胞术检测发现感染PEDV病毒后细胞凋亡率明显升高,且PEDV诱导细胞凋亡呈时间和剂量依赖性(P<0.05或P<0.01);进一步研究发现,冠状病毒木瓜样蛋白酶(PLP)在病毒引起凋亡过程中起重要作用.实验发现,转染PEDV-PLP质粒后,caspase-3活化体表达水平明显升高. 提示冠状病毒PLP蛋白酶通过激活caspase-3在病毒诱导细胞凋亡过程中起着关键作用. 以上结果为研究人类冠状病毒PLP蛋白功能及其通过细胞凋亡调节宿主抗病毒天然免疫机制提供重要基础.  相似文献   

6.
7.
8.
9.
Hepatocellular carcinoma (HCC) is the most common liver cancer and the third-leading cause of cancer death worldwide. Nilotinib is an orally available receptor tyrosine kinase inhibitor approved for chronic myelogenous leukemia. This study investigated the effect of nilotinib on HCC. Nilotinib did not induce cellular apoptosis. Instead, staining with acridine orange and microtubule-associated protein 1 light chain 3 revealed that nilotinib induced autophagy in a dose- and time-dependent manner in HCC cell lines, including PLC5, Huh-7, and Hep3B. Moreover, nilotinib up-regulated the phosphryaltion of AMP-activated kinase (AMPK) and protein phosphatase PP2A inactivation were detected after nilotinib treatment. Up-regulating PP2A activity suppressed nilotinib-induced AMPK phosphorylation and autophagy, suggesting that PP2A mediates the effect of nilotinib on AMPK phosphorylation and autophagy. Our data indicate that nilotinib-induced AMPK activation is mediated by PP2A, and AMPK activation and subsequent autophagy might be a major mechanism of action of nilotinib. Growth of PLC5 tumor xenografts in BALB/c nude mice was inhibited by daily oral treatment with nilotinib. Western blot analysis showed both increased phospho-AMPK expression and decreased PP2A activity in vivo. Together, our results reveal that nilotinib induces autophagy, but not apoptosis in HCC, and that the autophagy-inducing activity is associated with PP2A-regulated AMPK phosphorylation.  相似文献   

10.
11.
Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.  相似文献   

12.
The incidence of mucormycosis has dramatically increased in immunocompromised patients. Moreover, the array of cellular targets whose inhibition results in fungal cell death is rather limited. Mitochondria have been mechanistically identified as central regulators of detoxification and virulence in fungi. Our group has previously designed and developed a proteolytically-resistant peptidomimetic motif D(KLAKLAK)2 with pleiotropic action ranging from targeted (i.e., ligand-directed) activity against cancer and obesity to non-targeted activity against antibiotic resistant gram-negative rods. Here we evaluated whether this non-targeted peptidomimetic motif is active against Mucorales. We show that D(KLAKLAK)2 has marked fungicidal action, inhibits germination, and reduces hyphal viability. We have also observed cellular changes characteristic of apoptosis in D(KLAKLAK)2-treated Mucorales cells. Moreover, the fungicidal activity was directly correlated with vacuolar injury, mitochondrial swelling and mitochondrial membrane depolarization, intracellular reactive oxygen species accumulation (ROS), and increased caspase-like enzymatic activity. Finally, these apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine indicating mechanistic pathway specificity. Together, these findings indicate that D(KLAKLAK)2 makes Mucorales exquisitely susceptible via mitochondrial injury-induced apoptosis. This prototype may serve as a candidate drug for the development of translational applications against mucormycosis and perhaps other fungal infections.  相似文献   

13.

Background

We have previously reported that free Heme generated during experimental cerebral malaria (ECM) in mice, is central to the pathogenesis of fatal ECM. Heme-induced up-regulation of STAT3 and CXCL10 promotes whereas up-regulation of HO-1 prevents brain tissue damage in ECM. We have previously demonstrated that Heme is involved in the induction of apoptosis in vascular endothelial cells. In the present study, we further tested the hypothesis that Heme reduces blood-brain barrier integrity during ECM by induction of apoptosis of brain vascular endothelial cells through STAT3 and its target gene matrix metalloproteinase three (MMP3) signaling.

Methods

Genes associated with the JAK/STAT3 signaling pathway induced upon stimulation by Heme treatment, were assessed using real time RT2 Profile PCR arrays. A human MMP3 promoter was cloned into a luciferase reporter plasmid, pMMP3, and its activity was examined following exposure to Heme treatment by a luciferase reporter gene assay. In order to determine whether activated nuclear protein STAT3 binds to the MMP3 promoter and regulates MMP3 gene, we conducted a ChIP analysis using Heme-treated and untreated human brain microvascular endothelial cells (HBVEC), and determined mRNA and protein expression levels of MMP3 using qRT-PCR and Western blot. Apoptosis in HBVEC treated with Heme was evaluated by MTT and TUNEL assay.

Results

The results show that (1) Heme activates a variety of JAK/STAT3 downstream pathways in HBVEC. STAT3 targeted genes such as MMP3 and C/EBPb (Apoptosis-related genes), are up regulated in HBVEC treated with Heme. (2) Heme-induced HBVEC apoptosis via activation of STAT3 as well as its downstream signaling molecule MMP3 and upregulation of CXCL10 and HO-1 expressions. (3) Phosphorylated STAT3 binds to the MMP3 promoter in HBVEC cells, STAT3 transcribed MMP3 and induced MMP3 protein expression in HBVEC cells.

Conclusions

Activated STAT3 binds to the MMP3 promoter region and regulates MMP3 in Heme-induced endothelial cell apoptosis.  相似文献   

14.
The indolizidine alkaloid swainsonine (SW) has been reported to impair placentae and ultimately cause abortion in pregnant goats. Up to now, however, the precise effects of SW on goat trophoblast cells (GTCs) are still unclear. In this study, the cytotoxicity effects of SW on GTCs were detected and evaluated by MTT assay, AO/EB double staining, DNA fragmentation assay and flow cytometry analysis. Results showed that SW treatment significantly suppressed GTCs viability and induced typical apoptotic features in a time- and concentration-dependent manner. SW treatment increased Bax protein levels, reduced Bcl-2 protein levels, induced Bax translocation to mitochondria, and triggered the release of cytochrome c from mitochondria into cytosol, which in turn activated caspase-9 and caspase-3, and cleaved PARP, resulting in GTCs apoptosis. However, caspase-8 activity and the level of Bid did not exhibit significant changes in the process of SW-induced apoptosis. In addition, TUNEL assay suggested that SW induced GTCs apoptosis but not other cells in goat placenta cotyledons. Taken together, these data suggest that SW selectively induces GTCs apoptosis via the activation of mitochondria-mediated apoptosis pathway in goat placenta cotyledons, which might contribute to placentae impairment and abortion in pregnant goats fed with SW-containing plants. These findings may provide new insights to understand the mechanisms involved in SW-caused goat''s abortion.  相似文献   

15.

Background

The matrix metalloproteinases (MMPs) and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1–4) are responsible for the physiological remodeling of the extracellular matrix (ECM). Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death. As little is known about the underlying mechanisms, we set out to investigate the pro-apoptotic effect of TIMP3 in human mesenchymal cells.

Methodology/Principal Findings

Lentiviral overexpression of TIMP3 in mesenchymal cells led to a strong dose-dependent induction of ligand-independent apoptosis as reflected by a five-fold increase in caspase 3 and 7 activity compared to control (pLenti6/V5-GW/lacZ) or uninfected cells, whereas exogenous TIMP3 failed to induce apoptosis. Concordantly, increased cleavage of death substrate PARP and the caspases 3 and 7 was observed in TIMP3 overexpressing cultures. Notably, activation of caspase-8 but not caspase-9 was observed in TIMP3-overexpressing cells, indicating a death receptor-dependent mechanism. Moreover, overexpression of TIMP3 led to a further induction of apoptosis after stimulation with TNF-alpha, FasL and TRAIL. Most interestingly, TIMP3-overexpression was associated with a decrease in phosphorylation of cRaf, extracellular signal-regulated protein kinase (Erk1/2), ribosomal S6 kinase (RSK1) and Akt and serum deprivation of TIMP3-overexpressing cells resulted in a distinct enhancement of apoptosis, pointing to an impaired signaling of serum-derived survival factors. Finally, heparinase treatment of heparan sulfate proteoglycans led to the release of TIMP3 from the surface of overexpressing cells and to a significant decrease in apoptosis indicating that the binding of TIMP3 is necessary for apoptosis induction.

Conclusion

The results demonstrate that exclusively cell surface-bound endogenous TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival signaling pathways.  相似文献   

16.
Lipocalin 2 (LCN2) is a secreted, iron-binding glycoprotein that is abnormally expressed in some malignant human cancers. However, the roles of LCN2 in hepatocellular carcinoma (HCC) cells are unknown. In this study, we suggested the LCN2 and LCN2R were weak detected in the HCC cell lines, LCN2 and LCN2R were found to be down-regulated in tumor tissues in 16 HCC patients. MTT, DAPI, TUNEL, and flow cytometry analyses revealed that LCN2 overexpression dramatically inhibited cell viability, induced apoptosis features of cell-cycle arrest in sub-G1 phase, in DNA fragmentation, and in condensation of chromatin in Huh-7 and SK-Hep-1 cells. Western blots were used to detect the activation of caspase, pro-apoptosis, and anti-apoptosis protein expression in overexpress-LCN2 HCC cells. LCN2-induced apoptosis was characterized by cleavage of caspase-9, -8, -3, and PARP protein, and a reduction in the mitochondrial membrane potential (MMP). Furthermore, LCN2 also enhanced the down-regulated Bcl-2 and up-regulated the expression of Bax. In addition, our experiments with caspase inhibitors LEHD-FMK and IETD-FMK prevent LCN2-induced apoptosis. We also demonstrated that treatment of overexpress-LCN2 HCC cells with the LCN2 neutralized antibody also significantly attenuated LCN2-induced cell apoptosis. These findings indicate that LCN2 overexpression can effectively induce apoptosis of HCC cells and may be used as a potent therapy against human HCC.  相似文献   

17.
18.
SNX-2112 is a heat shock protein 90 (Hsp90) inhibitor with anticancer properties currently in clinical trials. This study investigated the effects of SNX-2112 on inhibition of cell growth, the cell cycle, and apoptosis in MCF-7 human breast cancer cells, in addition to the various molecular mechanisms. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis suggest that SNX-2112 inhibits cell growth in a time- and dose-dependent manner more potently than 17-(allylamino)-17-demethoxygeldanmycin (17-AAG), a traditional Hsp90 inhibitor, probably as a result of cell-cycle arrest at the G2/M phase and the induction of apoptosis. Downregulation of Bcl-2 and Bcl-xL, upregulation of Bax, cleavage of caspase-9 and poly (ADP-ribose) polymerase (PARP), and degradation of the breast cancer-related Hsp90 client proteins human epidermal growth factor receptor-2 (HER2), Akt, Raf-1, and nuclear factor kappa-B kinase (IKK) were observed in SNX-2112 treated cells by Western blot assay. These findings suggest that the molecular mechanisms of cell-growth inhibition by SNX-2112 involve activation of the mitochondrial apoptotic pathway and the degradation of breast cancer-related proteins.  相似文献   

19.
Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号