首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.

Background

In Uganda, control of intestinal schistosomiasis with preventive chemotherapy is typically focused towards treatment of school-aged children; the needs of younger children are presently being investigated as in lakeshore communities very young children can be infected. In the context of future epidemiological monitoring, we sought to compare the detection thresholds of available diagnostic tools for Schistosoma mansoni and estimate a likely age of first infection for these children.

Methods and Findings

A total of 242 infants and preschool children (134 boys and 108 girls, mean age 2.9 years, minimum 5 months and maximum 5 years) were examined from Bugoigo, a well-known disease endemic village on Lake Albert. Schistosome antigens in urine, eggs in stool and host antibodies to eggs were inspected to reveal a general prevalence of 47.5% (CI95 41.1–54.0%), as ascertained by a positive criterion from at least one diagnostic method. Although children as young as 6 months old could be found infected, the average age of infected children was between 3¼–3¾ years, when diagnostic techniques became broadly congruent.

Conclusion

Whilst different assays have particular (dis)advantages, direct detection of eggs in stool was least sensitive having a temporal lag behind antigen and antibody methods. Setting precisely a general age of first infection is problematic but if present Ugandan policies continue, a large proportion of infected children could wait up to 3–4 years before receiving first medication. To better tailor treatment needs for this younger ageclass, we suggest that the circulating cathodic antigen urine dipstick method to be used as an epidemiological indicator.  相似文献   

2.
Major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB) exon 2 in a wild population of Hume’s pheasant (Syrmaticus humiae), which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume’s pheasant. The d Nd S ratio at putative antigen-binding sites (ABS) was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume’s pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume’s pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume’s pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume’s pheasant MHC after suffering extreme habitat fragmentation.  相似文献   

3.
Most skin pathologies are characterized by unbalanced synthesis of major histocompatability complex II (MHC-II) proteins. Healthy skin keratinocytes simultaneously produce large amounts of MHC-II and regeneration-supporting proteins, e.g. erythropoietin (EPO), EPO receptor (EPOR), glutamine synthetase (GS) and metallothionein (MT). To investigate the level of regeneration-supporting proteins in the skin during misbalanced production of MHC-II, skin sections from nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull and or Foxn1 nu/nu mice which are a priory known to under- and over-express MHC II, respectively, were used. Double immunofluorescence analysis of NOD/SCID/γcnull skin sections showed striking decrease in expression of MHC-II, EPO, GS and MT. In Foxn1 nu/nu mouse skin, GS was strongly expressed in epidermis and in hair follicles (HF), which lacked EPO. In nude mouse skin EPO and MHC-II were over-expressed in dermal fibroblasts and they were completely absent from cortex, channel, medulla and keratinocytes surrounding the HF, suggest a role for EPO in health and pathology of hair follicle. The level of expression of EPO and GS in both mutant mice was confirmed by results of Western blot analyses. Strong immunoresponsiveness of EPOR in the hair channels of NOD/SCID/γcnull mouse skin suggests increased requirements of skin cells for EPO and possible benefits of exogenous EPO application during disorders of immune system accompanied by loss MHC-II in skin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号