共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fabio Manfredini Oksana Riba-Grognuz Yannick Wurm Laurent Keller DeWayne Shoemaker Christina M. Grozinger 《PLoS genetics》2013,9(8)
One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the “winner”) in pleometrotic associations survives and takes the lead of the young colony while the others (the “losers”) are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen''s physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals. 相似文献
3.
4.
In social insects, colony nutrition depends upon the volume and quality of food distributed, ingested, and assimilated by its members. The ability of Solenopsis invicta workers and larvae to regulate the volume of food ingested individually has been well documented. In this paper, the ability of fire ant workers and larvae to regulate the quality and type of food ingested is demonstrated. Larvae displayed independent appetites for solid protein, amino acid solution, and sucrose solution. When larvae that had fed on one food type were switched to another, they fed on the second food type at rates characteristic of that food type, not of the volume of food previously ingested. Larvae preferred concentrated sucrose and amino acids solutions over dilute solutions. Larval fullness was thus a relative property, depending upon the nature of food as well as the volume ingested. The number of workers recruiting to food sites also depended upon food concentration and food type. Workers preferred sucrose to amino acids, concentrated to dilute solutions, and novel to accustomed food. The absence of protein in the worker diet rather than the presence of larvae caused workers to switch their preference from sugar to amino acids solutions. When the colony was offered sucrose and amino acids solutions simultaneously, individual workers ingested from one or the other site, but not both. Little mixing of crop contents occurred when workers solicited from one another inside the nest. Workers tended to regurgitate to larvae after ingesting amino acids and to other workers after ingesting sucrose. The mechanism regulating the distribution of protein pellets, which workers do not ingest, among larvae is unknown. In summary, colony nutrition was regulated by a chain of demand. Forager hunger determined the rate at which food flowed from the environment into the nest. Larval hunger and nest-worker hunger determined the rate and direction in which food moved within the nest. 相似文献
5.
JR Dos Santos Pinto EG Fox DM Saidemberg LD Santos AR da Silva Menegasso E Costa-Manso EA Machado OC Bueno MS Palma 《Journal of proteome research》2012,11(9):4643-4653
Fire ants are well-known by their aggressive stinging behavior, causing many stinging incidents of medical importance. The limited availability of fire ant venom for scientific and clinical uses has restricted, up to now, the knowledge about the biochemistry, immunology, and pharmacology of these venoms. For this study, S. invicta venom was obtained commercially and used for proteomic characterization. For this purpose, the combination of gel-based and gel-free proteomic strategies was used to assign the proteomic profile of the venom from the fire ant S. invicta. This experimental approach permitted the identification of 46 proteins, which were organized into four different groups according to their potential role in fire ant venom: true venom components, housekeeping proteins, body muscle proteins, and proteins involved in chemical communication. The active venom components that may not present toxic roles were classified into three subgroups according to their potential functions: self-venom protection, colony asepsis, and chemical communication. Meanwhile, the proteins classified as true toxins, based on their functions after being injected into the victims' bodies by the fire ants, were classified in five other subgroups: proteins influencing the homeostasis of the victims, neurotoxins, proteins that promote venom diffusion, proteins that cause tissue damage/inflammation, and allergens. 相似文献
6.
Lloyd W. Morrison Sanford D. Porter Eric Daniels Michael D. Korzukhin 《Biological invasions》2004,6(2):183-191
The red imported fire ant, Solenopsis invicta Buren, is an invasive pest that has become widespread in the southern United States and Caribbean after introduction from South America in the 1930s. This species, which has diverse detrimental impacts on recipient communities, was recently discovered in Australia and New Zealand and has the potential to colonize numerous other regions. We used a dynamic, ecophysiological model of colony growth to predict the potential global range expansion of this invasive species. Based on minimum and maximum daily temperatures, the model estimates colony alate production and predicts future geographic range limits. Because S. invicta populations are limited by arid conditions as well as cold temperatures, we superimposed precipitation data upon temperature-based predictions, to identify regions that do not receive enough rainfall to support this species across the landscape. Many areas around the globe, including large portions of Europe, Asia, Africa, Australia, and numerous island nations, are at risk for S. invicta infestation. Quarantine officials should be vigilant for any accidental introductions of this pest in susceptible regions. Costs of eradication increase dramatically as the area of infestation grows, and large infestations may be impossible to eradicate. Other South American Solenopsis fire ants (e.g., S. richteri Forel) may become invasive if the opportunity arises, and our predictions for S. invicta may approximate the potential range limits for these species as well. 相似文献
7.
K. L. Haight 《Journal of Insect Behavior》2008,21(3):147-152
The fire ant, Solenopsis invicta, appears to deviate from the usual age-related pattern of defensive behavior seen in other social insects; instead of older
workers being more defensive than younger ones, they are less so. Here I test this pattern by quantifying changes in the defensive
stinging behavior of S. invicta workers of known age. I found defensiveness, measured as both the number of stings delivered and the amount of venom delivered
per sting (venom dose), to increase with age initially but then decline after a mid-age peak. This hump-shaped ontogeny may
be the result of S. invicta's foraging strategy, which effectively shifts the responsibility of nest defense to workers younger than foraging age. It
is S. invicta's mid-aged workers that are the most defensive, probably because they are both physiologically and spatially the most suitable
nest defenders. 相似文献
8.
Sleep is a well-studied biological process in vertebrates, particularly birds and mammals. Less is know about sleep in solitary and social invertebrates, particularly the ants. This paper reports a study of light/dark periods on worker activity as well as sleep location, posture and the wake/sleep cycles of fire ant workers and queens located in an artificial nest chamber. Workers slept in one of three locations: on the ceiling, against the chamber wall or in the center of the chamber floor. Workers on the ceiling or against the chamber wall slept for longer periods than those at the center of the chamber floor where most grooming and feeding activity occurred. When sleeping, queens huddled together. Their close contact generated synchronized wake/sleep cycles with each other. Sleep posture was distinctly different than wake posture. During deep sleep, queens and workers folded their antennae and were non-responsive to contact by other ants. Another indicator of deep sleep was rapid antennal movement (RAM sleep). Sleep episodes were polyphasic. Queens averaged ~92 sleep episodes per day, each episode lasting ~6 min, for a total of ~9.4 h of sleep per day. Workers averaged ~253 sleep episodes lasting 1.1 min each for a total of ~4.8 h of sleep per day. Activity episodes were unaffected by light/dark periods. Workers were hypervigilant with an average of 80% of the labor force completing grooming, feeding or excavation tasks at any given time. These findings reinforce the parental exploitation hypothesis—sterile workers are a caste of disposable, short-lived helpers whose vigilance and hyperactivty increases the queen’s fitness by buffering her and her fertile offspring from environmental stresses. 相似文献
9.
Effect of a Founder Event on Variation in the Genetic Sex-Determining System of the Fire Ant Solenopsis Invicta 总被引:3,自引:1,他引:3
下载免费PDF全文

Effects of a recent founder event on genetic diversity in wild populations of the fire ant Solenopsis invicta were studied, with particular attention given to the genetic sex-determining system. Diploid males are far more common relative to haploid males in introduced populations than in native populations of fire ants, and queens that produce diploid males account for a significantly larger proportion of the mated queens in introduced than in native populations. Differences between native and introduced populations in attributes of the mating systems (i.e., queen mating frequency or level of inbreeding) can be excluded as factors contributing to these different levels of diploid male production. Thus, we conclude that diploid males have increased in frequency in introduced populations because of a loss of allelic diversity at the sex-determining locus (loci). This loss of sex alleles has generated a substantial increase in the estimated segregational genetic load associated with production of sterile diploid males in introduced populations over the load in native populations. The loss of allelic diversity in the sex-determining system in introduced S. invicta is paralleled by a loss of electrophoretically detectable rare alleles at protein-encoding loci. Such concordance between these different types of markers is predicted because each of the many sex alleles present in the native populations is expected to be rare. Estimates of expected heterozygosity (H(exp)) based on 76 electrophoretic loci do not differ significantly between the native and introduced fire ant populations, illustrating the lack of sensitivity of this measure for detecting many types of bottlenecks. 相似文献
10.
Freder Medina Haiwen Li S. Bradleigh Vinson Craig J. Coates 《Current microbiology》2009,58(5):478-482
In our previous study we isolated 10 bacterial species from fourth-instar larval midguts of the red imported fire ant, Solenopsis invicta. Here we report the genetic transformation and reintroduction of three species (Kluyvera cryocrescens, Serratia marcescens, and isolate 38) into the fire ant host. All three species were transformed with the plasmid vector, pZeoDsRed. High expression
levels of DsRed were observed and the plasmid is maintained in these bacteria at 37°C in the absence of antibiotic selection
for at least 9 days of subculturing. The transformed bacteria were successfully reintroduced into fire ant larvae and survived
in the fire ant gut for at least 7 days. Upon pupal emergence, 7 days after reintroduction, transformed bacteria can still
be isolated, however, most were passed out in the meconium. We further demonstrated that the engineered bacteria could be
spread within the colony by feeding this meconium to naive larvae with the aid of worker fire ants.
Freder Medina and Haiwen Li have contributed equally to this work. 相似文献
11.
The red imported fire ant (RIFA) (Solenopsis invicta Buren), an exotic insect pest in Texas, has become well established throughout the eastern part of the state. More aggressive
than native ant species, RIFA gradually have enlarged their range and spread north and west despite intense efforts to stop
them. Symbiotic bacteria have an important relationship in the midgut of fourth instar RIFA larvae. However, the presence
of symbiotic bacteria in hemolymph has not been explored. In this study, symbiotic bacteria isolated from the hemolymph of
fourth instar larvae of RIFA were genetically identified in terms of genus using a partial sequence of the 16S rRNA gene. Using three different primer sets to amplify regions of the gyrA, gyrB, and SG850 genes, multiple species of the genus Bacillus were identified as inhabitants of fire ant hemolymph. Analysis of gyrA gene identified Bacillus cereus with a percentage match of 94.13–99.20% with DNA sequences from GenBank BLAST (). Using the gyrB gene, Bacillus species were identified with a percentage match of 95.48% to 100% using DNA sequences from GenBank. Finally, analysis of
the SG850 gene identified Bacillus cereus with a percentage match of 96.20% to 99.83% using DNA sequences from GenBank. 相似文献
12.
Pepper plants in the genus Piper (Piperales: Piperaceae) are common in the Brazilian Amazon and many produce compounds with biological activity against insect pests. We evaluated the insecticidal effect of essential oils from Piper aduncum, Piper marginatum (chemotypes A and B), Piper divaricatum and Piper callosum against workers of the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae), as well as their chemical composition by gas chromatography and gas chromatography?Cmass spectrometry. The lowest median lethal concentration (LC50) in 48?h was obtained with the oil of P. aduncum (58.4?mg/L), followed by the oils of P. marginatum types A (122.4?mg/L) and B (167.0?mg/L), P. divaricatum (301.7?mg/L), and P. callosum (312.6?mg/L). The major chemical constituents were dillapiole (64.4%) in the oil of P. aduncum; p-mentha-1(7),8-diene (39.0%), 3,4-methylenedioxypropiophenone (19.0%), and (E)-??-ocimene (9.8%) in P. marginatum chemotype A and (E)-isoosmorhizole (32.2%), (E)-anethole (26.4%), isoosmorhizole (11.2%), and (Z)-anethole (6.0%) in P. marginatum chemotype B; methyleugenol (69.2%) and eugenol (16.2%) in P. divaricatum; and safrole (69.2%), methyleugenol (8.6%), and ??-pinene (6.2%) in P. callosum. These chemical constituents have been previously known to possess insecticidal properties. 相似文献
13.
The association of the exotic fire ant, Solenopsis invicta with man-modified habitats has been amply demonstrated, but the fate of such populations if ecological succession proceeds has rarely been investigated. Resurvey of a fire ant population in a longleaf pine plantation after 25 years showed that the recovery of the site from habitat disturbance was associated with a large fire ant population decline. Most of the persisting colonies were associated with the disturbance caused by vehicle tracks. In a second study, mature monogyne fire ant colonies that had been planted in experimental plots in native groundcover of the north Florida longleaf pine forest had mostly vanished six years later. These observations and experiments show that S. invicta colonies rarely persist in the native habitat of these pine forests, probably because they are not replaced when they die. A single site harbored a modest population of polygyne fire ants whose persistence was probably facilitated by reproduction through colony fission. 相似文献
14.
Deborah M. Gordon 《PloS one》2012,7(11)
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest. 相似文献
15.
Neuropeptides and their receptors play vital roles in controlling the physiology and behavior of animals. Short neuropeptide F (sNPF) signaling regulates several physiological processes in insects such as feeding, locomotion, circadian rhythm and reproduction, among others. Previously, the red imported fire ant (Solenopsis invicta) sNPF receptor (S. invicta sNPFR), a G protein-coupled receptor, was immunolocalized in queen and worker brain and queen ovaries. Differential distribution patterns of S. invicta sNPFR protein in fire ant worker brain were associated both with worker subcastes and with presence or absence of brood in the colony. However, the cognate ligand for this sNPFR has not been characterized and attempts to deorphanize the receptor with sNPF peptides from other insect species which ended in the canonical sequence LRLRFamide, failed. Receptor deorphanization is an important step to understand the neuropeptide receptor downstream signaling cascade. We cloned the full length cDNA of the putative S. invicta sNPF prepropeptide and identified the putative “sNPF” ligand within its sequence. The peptide ends with an amidated Tyr residue whereas in other insect species sNPFs have an amidated Phe or Trp residue at the C-terminus. We stably expressed the HA-tagged S. invicta sNPFR in CHO-K1 cells. Two S. invicta sNPFs differing at their N-terminus were synthesized that equally activated the sNPFR, SLRSALAAGHLRYa (EC50 = 3.2 nM) and SALAAGHLRYa (EC50 = 8.6 nM). Both peptides decreased the intracellular cAMP concentration, indicating signaling through the Gαi-subunit. The receptor was not activated by sNPF peptides from other insect species, honey bee long NPF (NPY) or mammalian PYY. Further, a synthesized peptide otherwise identical to the fire ant sequence but in which the C-terminal amidated amino acid residue ‘Y’ was switched to ‘F’, failed to activate the sNPFR. This discovery will now allow us to investigate the function of sNPY and its cognate receptor in fire ant biology. 相似文献
16.
SYNOPSIS. A new species of neogregarine, Mattesia geminata sp. n., that infects immature stages of the tropical fire ant, Solenopsis geminata (Fabricius), is described. The parasite, which develops in the hypodermis, causes disruption of the developing eyes, melanization of the cuticle, and death of pupae. lntracolonial infection rates are usually less than 2±, but may exceed 90±. Attempts to transmit the infection were unsuccessful. 相似文献
17.
18.
A sex-ratio bias was studied in alates of natural polygyne colonies of Solenopsis invicta Buren in southern China. The results showed that at the population level, the numbers of male and female alates were nearly
equal, even though there was a strong bias toward producing one particular sex at the nest level. For example, 88.89% of the
nests sampled were strongly biased toward males or females. In particular, three bias types were observed: extreme female
bias, extreme male bias, and a moderate bias. Future studies should address the factors that lead queens to produce strongly
biased sex ratios. 相似文献
19.
Olivier Rey Arnaud Estoup Benoit Facon Anne Loiseau Alexandre Aebi Olivier Duron Fabrice Vavre Julien Foucaud 《PloS one》2013,8(3)
Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process. 相似文献
20.
Danon Clemes Cardoso Silvia das Gra?as Pompolo Maykon Passos Cristiano Mara Garcia Tavares 《PloS one》2014,9(1)
Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution. 相似文献