首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adeno-associated virus type 2 (AAV2) capsid assembly requires the expression of a virally encoded assembly-activating protein (AAP). By providing AAP together with the capsid protein VP3, capsids are formed that are composed of VP3 only. Electron cryomicroscopy analysis of assembled VP3-only capsids revealed all characteristics of the wild-type AAV2 capsids. However, in contrast to capsids assembled from VP1, VP2, and VP3, the pores of VP3-only capsids were more restricted at the inside of the 5-fold symmetry axes, and globules could not be detected below the 2-fold symmetry axes. By comparing the capsid assembly of several AAV serotypes with AAP protein from AAV2 (AAP-2), we show that AAP-2 is able to efficiently stimulate capsid formation of VP3 derived from several serotypes, as demonstrated for AAV1, AAV2, AAV8, and AAV9. Capsid formation, by coexpressing AAV1-, AAV2-, or AAV5-VP3 with AAP-1, AAP-2, or AAP-5 revealed the ability of AAP-1 and AAP-2 to complement each other in AAV1 and AAV2 assembly, whereas for AAV5 assembly more specific conditions are required. Sequence alignment of predicted AAP proteins from the known AAV serotypes indicates a high degree of homology of all serotypes to AAP-2 with some divergence for AAP-4, AAP-5, AAP-11, and AAP-12. Immunolocalization of assembled capsids from different serotypes confirmed the preferred nucleolar localization of capsids, as observed for AAV2; however, AAV8 and AAV9 capsids could also be detected throughout the nucleus. Taken together, the data show that AAV capsid assembly of different AAV serotypes also requires the assistance of AAP proteins.  相似文献   

2.
The triplex of herpesvirus capsids is a unique structural element. In herpes simplex virus type 1 (HSV-1), one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent VP5 molecules. The interaction between VP19C and VP23 was inferred by yeast cryoelectron microscopy studies and subsequently confirmed by the two-hybrid assay. In order to define the functional domains of VP19C and VP23, a Tn7-based transposon was used to randomly insert 15 bp into the coding regions of these two proteins. The mutants were initially screened for interaction in the yeast two-hybrid assay to identify the domains important for triplex formation. Using genetic complementation assays in HSV-1-infected cells, the domains of each protein required for virus replication were similarly uncovered. The same mutations that abolish interaction between these two proteins in the yeast two-hybrid assay similarly failed to complement the growth of the VP23- and VP19C-null mutant viruses in the genetic complementation assay. Some of these mutants were transferred into recombinant baculoviruses to analyze the effect of the mutations on herpesvirus capsid assembly in insect cells. The mutations that abolished the interaction in the yeast two-hybrid assay also abolished capsid assembly in insect cells. The outcome of these experiments showed that insertions in at least four regions and especially the amino terminus of VP23 abolished function, whereas the amino terminus of VP19C can tolerate transposon insertions. A novel finding of these studies was the ability to assemble herpesvirus capsids in insect cells using VP5 and VP19C that contained a histidine handle at their amino terminus.  相似文献   

3.
Herpes simplex virus type 1 (HSV-1) intermediate capsids are composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, and the genes that encode these proteins, UL19, UL38, UL26, UL26.5, UL18, UL26, and UL35, respectively. The UL26 gene encodes a protease that cleaves itself and the product of the UL26.5 gene at a site (M site) 25 amino acids from the C terminus of these two proteins. In addition, the protease cleaves itself at a second site (R site) between amino acids 247 and 248. Cleavage of the UL26 protein gives rise to the capsid proteins VP21 and VP24, and cleavage of the UL26.5 protein gives rise to the capsid protein VP22a. Previously we described the production of HSV-1 capsids in insect cells by infecting the cells with recombinant baculoviruses expressing the six capsid genes (D. R. Thomsen, L. L. Roof, and F. L. Homa, J. Virol. 68:2442-2457, 1994). Using this system, we demonstrated that the products of the UL26 and/or UL26.5 genes are required as scaffolds for assembly of HSV-1 capsids. To better understand the functions of the UL26 and UL26.5 proteins in capsid assembly, we constructed baculoviruses that expressed altered UL26 and UL26.5 proteins. The ability of the altered UL26 and UL26.5 proteins to support HSV-1 capsid assembly was then tested in insect cells. Among the specific mutations tested were (i) deletion of the C-terminal 25 amino acids from the proteins coded for by the UL26 and UL26.5 genes; (ii) mutation of His-61 of the UL26 protein, an amino acid required for protease activity; and (iii) mutation of the R cleavage site of the UL26 protein. Analysis of the capsids formed with wild-type and mutant proteins supports the following conclusions: (i) the C-terminal 25 amino acids of the UL26 and UL26.5 proteins are required for capsid assembly; (ii) the protease activity associated with the UL26 protein is not required for assembly of morphologically normal capsids; and (iii) the uncleaved forms of the UL26 and UL26.5 proteins are employed in assembly of 125-nm-diameter capsids; cleavage of these proteins occurs during or subsequent to capsid assembly. Finally, we carried out in vitro experiments in which the major capsid protein VP5 was mixed with wild-type or truncated UL26.5 protein and then precipitated with a VP5-specific monoclonal antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP232 heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP232 heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid.  相似文献   

5.
Direct insertion of amino acid sequences into the adeno-associated virus type 2 (AAV) capsid open reading frame (cap ORF) is one strategy currently being developed for retargeting this prototypical gene therapy vector. While this approach has successfully resulted in the formation of AAV particles that have expanded or retargeted viral tropism, the inserted sequences have been relatively short, linear receptor binding ligands. Since many receptor-ligand interactions involve nonlinear, conformation-dependent binding domains, we investigated the insertion of full-length peptides into the AAV cap ORF. To minimize disruption of critical VP3 structural domains, we confined the insertions to residue 138 within the VP1-VP2 overlap, which has been shown to be on the surface of the particle following insertion of smaller epitopes. The insertion of coding sequences for the 8-kDa chemokine binding domain of rat fractalkine (CX3CL1), the 18-kDa human hormone leptin, and the 30-kDa green fluorescent protein (GFP) after residue 138 failed to lead to formation of particles due to the loss of VP3 expression. To test the ability to complement these insertions with the missing capsid proteins in trans, we designed a system for producing AAV vectors in which expression of one capsid protein is isolated and combined with the remaining two capsid proteins expressed separately. Such an approach allows for genetic modification of a specific capsid protein across its entire coding sequence leaving the remaining capsid proteins unaffected. An examination of particle formation from the individual components of the system revealed that genome-containing particles formed as long as the VP3 capsid protein was present and demonstrated that the VP2 capsid protein is nonessential for viral infectivity. Viable particles composed of all three capsid proteins were obtained from the capsid complementation groups regardless of which capsid proteins were supplied separately in trans. Significant overexpression of VP2 resulted in the formation of particles with altered capsid protein stoichiometry. The key finding was that by using this system we successfully obtained nearly wild-type levels of recombinant AAV-like particles with large ligands inserted after residue 138 in VP1 and VP2 or in VP2 exclusively. While insertions at residue 138 in VP1 significantly decreased infectivity, insertions at residue 138 that were exclusively in VP2 had a minimal effect on viral assembly or infectivity. Finally, insertion of GFP into VP1 and VP2 resulted in a particle whose trafficking could be temporally monitored by using confocal microscopy. Thus, we have demonstrated a method that can be used to insert large (up to 30-kDa) peptide ligands into the AAV particle. This system allows greater flexibility than current approaches in genetically manipulating the composition of the AAV particle and, in particular, may allow vector retargeting to alternative receptors requiring interaction with full-length conformation-dependent peptide ligands.  相似文献   

6.
Adeno-associated virus type 2 (AAV2) has gained much interest as a gene delivery vector. A hallmark of AAV2-mediated gene transfer is an intracellular conformational change of the virus capsid, leading to the exposure of infection-relevant protein domains. These protein domains, which are located on the N-terminal portion of the structural proteins VP1 and VP2, include a catalytic phospholipase A(2) domain and three clusters of basic amino acids. We have identified additional protein sequence motifs located on the VP1/2 N terminus that also proved to be obligatory for virus infectivity. These motifs include signals that are known to be involved in protein interaction, endosomal sorting and signal transduction in eukaryotic cells. Among different AAV serotypes they are highly conserved and mutation of critical amino acids of the respective motifs led to a severe infection-deficient phenotype. In particular, mutation of a YXXQ-sequence motif significantly reduced accumulation of virus capsids around the nucleus in comparison to wild-type AAV2. Interestingly, intracellular trafficking of AAV2 was shown to be independent of PLA(2) activity. Moreover, mutation of three PDZ-binding motifs, which are located consecutively at the very tip of the VP1 N terminus, revealed a nuclear transport-defective phenotype, suggesting a role in nuclear uptake of the virus through an as-yet-unknown mechanism.  相似文献   

7.
D R Thomsen  L L Roof    F L Homa 《Journal of virology》1994,68(4):2442-2457
The capsid of herpes simplex virus type 1 (HSV-1) is composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, which are the products of six HSV-1 genes. Recombinant baculoviruses were used to express the six capsid genes (UL18, UL19, UL26, UL26.5, UL35, and UL38) in insect cells. All constructs expressed the appropriate-size HSV proteins, and insect cells infected with a mixture of the six recombinant baculoviruses contained large numbers of HSV-like capsids. Capsids were purified by sucrose gradient centrifugation, and electron microscopy showed that the capsids made in Sf9 cells had the same size and appearance as authentic HSV B capsids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the protein composition of these capsids was nearly identical to that of B capsids isolated from HSV-infected Vero cells. Electron microscopy of thin sections clearly demonstrated that the capsids made in insect cells contained the inner electron-translucent core associated with HSV B capsids. In infections in which single capsid genes were left out, it was found that the UL18 (VP23), UL19 (VP5), UL38 (VP19C), and either the UL26 (VP21 and VP24) or the UL26.5 (VP22a) genes were required for assembly of 100-nm capsids. VP22a was shown to form the inner core of the B capsid, since in infections in which the UL26.5 gene was omitted the 100-nm capsids that formed lacked the inner core. The UL35 (VP26) gene was not required for assembly of 100-nm capsids, although assembly of B capsids was more efficient when it was present. These and other observations indicate that (i) the products of the UL18, UL19, UL35, and UL38 genes self-assemble into structures that form the outer surface (icosahedral shell) of the capsid, (ii) the products of the UL26 and/or UL26.5 genes are required (as scaffolds) for assembly of 100-nm capsids, and (iii) the interaction of the outer surface of the capsid with the scaffolding proteins requires the product of the UL18 gene (VP23).  相似文献   

8.
Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH(2)-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process.  相似文献   

9.
Protein-protein interactions drive the assembly of the herpes simplex virus type 1 capsid. A key interaction occurs between the C terminus of the scaffold protein and the N terminus of the major capsid protein (VP5). Results from alanine-scanning mutagenesis of hydrophobic residues in the N terminus of VP5 revealed seven residues (I27, L35, F39, L58, L65, L67, and L71) that reside in two predicted alpha helices (helix 1(22-42) and helix 2(58-72)) that are important for this bimolecular interaction. The goal of the present study was to further characterize the VP5 scaffold interaction domain (SID). Amino acids at the seven positions were replaced with L, M, V or P (I27); I, M, V, or P (L35, L58, L65, L67, and L71); and H, W, Y, or L (F39). Replacement with a hydrophobic side chain did not affect the interaction with scaffold protein in yeast cells or the ability of a virus specifying the mutation from replicating in cells. The mutation to the proline side chain abolished the interaction in all cases and was lethal for virus replication. Mutant viruses with proline substitutions in helix 1(22-42) at positions 27 and 35 assembled large open capsid shells that did not attain closure. Proline substitutions in helix 2(58-72) at either position 59, 65, or 67 abolished the accumulation of VP5 protein, and, at 58 and 71, although VP5 did accumulate, capsid shells were not assembled. Thus, the second SID, SID2, is highly structured, and this alpha helix (helix 2(58-72)) is likely involved in capsomere-capsomere interactions during shell accretion. Conserved glycine G59 in helix 2(58-72) was also mutated. G59 may act as a flexible "hinge" in helix 2(58-72) because decreasing the movement of this side chain by replacement with valine impaired capsid assembly. Thus, the N terminus of VP5 and the alpha helices embedded in this domain, as in the capsid shell proteins of some double-stranded DNA phages, are a key regulator of shell accretion and stabilization.  相似文献   

10.
The herpes simplex virus (HSV) triplex is a complex of three protein subunits, VP19C and a dimer of VP23 that is essential for capsid assembly. We have derived HSV-1 recombinant viruses that contain monomeric red fluorescent protein (mRFP1), a Flu hemagglutinin (HA) epitope, and a six-histidine tag fused to the amino terminus of VP19C. These viruses were capable of growth on Vero cells, indicating that the amino terminus of VP19C could tolerate these fusions. By use of immunoelectron microscopy methods, capsids that express VP19C-mRFP but not VP19C-HA were labeled with gold particles when incubated with the corresponding antibody. Our conclusion from the data is that a large tag at the N terminus of VP19C was sufficiently exposed on the capsid surface for polyclonal antibody reactivity, while the small HA epitope was inaccessible to the antibody. These data indicate that an epitope tag at the amino terminus of VP19C is not exposed at the capsid surface for reactivity to its antibody.  相似文献   

11.
Single-stranded genomes of adeno-associated virus (AAV) are packaged into preformed capsids. It has been proposed that packaging is initiated by interaction of genome-bound Rep proteins to the capsid, thereby targeting the genome to the portal of encapsidation. Here we describe a panel of mutants with amino acid exchanges in the pores at the fivefold axes of symmetry on AAV2 capsids with reduced packaging and reduced Rep-capsid interaction. Mutation of two threonines at the rim of the fivefold pore nearly completely abolished Rep-capsid interaction and packaging. This suggests a Rep-binding site at the highly conserved amino acids at or close to the pores formed by the capsid protein pentamers. A different mutant (P. Wu, W. Xiao, T. Conlon, J. Hughes, M. Agbandje-McKenna, T. Ferkol, T. Flotte, and N. Muzyczka, J. Virol. 74:8635-8647, 2000) with an amino acid exchange at the interface of capsid protein pentamers led to a complete block of DNA encapsidation. Analysis of the capsid conformation of this mutant revealed that the pores at the fivefold axes were occupied by VP1/VP2 N termini, thereby preventing DNA introduction into the capsid. Nevertheless, the corresponding capsids had more Rep proteins bound than wild-type AAV, showing that correct Rep interaction with the capsid depends on a defined capsid conformation. Both mutant types together support the conclusion that the pores at the fivefold symmetry axes are involved in genome packaging and that capsid conformation-dependent Rep-capsid interactions play an essential role in the packaging process.  相似文献   

12.
Capsids of adenovirus-associated virus (AAV) are known to contain three major structural proteins (A, B, and C). We have further resolved distinct subspecies of two of the major AAV proteins (two forms of protein A and four forms of protein C) which were found in both AAV1 and AAV2 serotypes. All subspecies were accurately synthesized in a cell-free translation system programmed with RNA isolated from infected cells. Analysis of virion proteins from the autonomous parvovirus H1 did not reveal a comparable array of subspecies of its major components. Staphylococcal V8 protease digestion of C proteins from AAV1 and AAV2 yielded very different electrophoretic patterns, indicating a considerable difference between the C proteins of these two serotypes, despite a high degree of genomic homology and an overall similarity in the number and relative proportions of analogous capsid proteins. On the other hand, staphylococcal V8 protease digestion of isolated proteins A, B, and C of AAV2 showed an extensive overlap among these proteins, possibly equivalent to all of protein C. In conjunction with other data, these findings suggest that proteins A, B, and C arise from different in-frame initiation sites contained in mRNA sequences that are transcribed from the right half of the AAV genome. The heterogeneity of subspecies may be explained by a partial read through of several tandem termination codons near the 3' end of AAV mRNA.  相似文献   

13.
Rotaviruses are the leading cause of severe infantile gastroenteritis worldwide. These viruses are large, complex icosahedral particles consisting of three concentric capsid layers enclosing a genome of eleven segments of double-stranded RNA (dsRNA). The amino terminus of the innermost capsid protein VP2 possesses a nonspecific single-stranded RNA and dsRNA binding activity, and the amino terminus is also essential for the incorporation of the polymerase enzyme VP1 and guanylyltransferase VP3 into the core of the virion. Biochemical and structural studies have suggested that VP2, and especially the amino terminus, appears to act as a scaffold for proper assembly of the components of the viral core. To locate the amino terminus of VP2 within the core, we have used electron cryomicroscopy and image reconstruction to determine the three-dimensional structures of recombinant virus-like particles that contain either full-length or amino-terminal-deleted forms of VP2 coexpressed with the intermediate capsid protein VP6. A comparison of these structures indicates two significant changes along the inner surface of VP2 in the structure lacking the amino terminus: a loss of mass adjacent to the fivefold axes and a redistribution of mass along the fivefold axes. Examination of the VP2 layer suggests that the proteins are arranged as dimers of 120 quasi-equivalent molecules, with each dimer extending between neighboring fivefold axes. Our results indicate that the amino termini of both quasi-equivalent VP2 molecules are located near the icosahedral vertices.  相似文献   

14.
An essential step in assembly of herpes simplex virus (HSV) type 1 capsids involves interaction of the major capsid protein (VP5) with the C terminus of the scaffolding protein (encoded by the UL26.5 gene). The final 12 residues of the HSV scaffolding protein contains an A-X-X-F-V/A-X-Q-M-M-X-X-R motif which is conserved between scaffolding proteins found in other alphaherpesviruses but not in members of the beta- or gamma-herpesviruses. Previous studies have shown that the bovine herpesvirus 1 (alphaherpesvirus) UL26.5 homolog will functionally substitute for the HSV UL26.5 gene (E. J. Haanes et al., J. Virol. 69:7375-7379, 1995). The homolog of the UL26.5 gene in the human cytomegalovirus (HCMV) genome is the UL80.5 gene. In these studies, we tested whether the HCMV UL80.5 gene would substitute for the HSV UL26.5 gene in a baculovirus capsid assembly system that we have previously described (D. R. Thomsen et al., J. Virol. 68:2442-2457, 1994). The results demonstrate that (i) no intact capsids were assembled when the full-length or a truncated (missing the C-terminal 65 amino acids) UL80.5 protein was tested; (ii) when the C-terminal 65 amino acids of the UL80.5 protein were replaced with the C-terminal 25 amino acids of the UL26.5 protein, intact capsids were made and direct interaction of the UL80.5 protein with VP5 was detected; (iii) assembly of intact capsids was demonstrated when the sequence of the last 12 amino acids of the UL80.5 protein was changed from RRIFVA ALNKLE to RRIFVAAMMKLE; (iv) self-interaction of the scaffold proteins is mediated by sequences N terminal to the maturation cleavage site; and (v) the UL26.5 and UL80.5 proteins will not coassemble into scaffold structures. The results suggest that the UL26.5 and UL80.5 proteins form a scaffold by self-interaction via sequences in the N termini of the proteins and emphasize the importance of the C terminus for interaction of scaffold with the proteins that form the capsid shell.  相似文献   

15.
Interactions among the major and minor coat proteins of polyomavirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
Murine polyomavirus contains two related minor coat proteins, VP2 and VP3, in addition to the major coat protein, VP1. The sequence of VP3 is identical to that of the carboxy-terminal two-thirds of VP2. VP2 may serve a role in uncoating of the virus, and both minor coat proteins may be important for viral assembly. In this study, we show that VP3 and a series of deletion mutants of VP3 can be expressed in Escherichia coli as fusion proteins to glutathione S-transferase and partially solubilized with a mild detergent. Using an in vitro binding assay, we demonstrate that a 42-amino-acid fragment near the carboxy terminus of VP3 (residues 140 to 181) is sufficient for binding to purified VP1 pentamers. This binding interaction is rapid, saturable, and specific for the common carboxy terminus of VP2 and VP3. The VP1-VP3 complex can be coimmunoprecipitated with an antibody specific to VP1, and a purified VP3 fragment can selectively extract VP1 from a crude cell lysate. The stoichiometry of the binding reaction suggests that each VP1 pentamer in the virus binds either one VP2 or one VP3, with the VP1-VP2/3 complex stabilized by hydrophobic interactions. These results, taken together with studies from other laboratories on the expression of polyomavirus capsid proteins in mouse and insect cells (S. E. Delos, L. Montross, R. B. Moreland, and R. L. Garcea, Virology, 194:393-398, 1993; J. Forstova, N. Krauzewicz, S. Wallace, A. J. Street, S. M. Dilworth, S. Beard, and B. E. Griffin, J. Virol. 67:1405-1413, 1993), support the idea that a VP1-VP2/3 complex forms in the cytoplasm and, after translocation into the nucleus, acts as the unit for viral assembly.  相似文献   

16.
The previously characterized monoclonal antibodies (MAbs) A1, A69, B1, and A20 are directed against assembled or nonassembled adeno-associated virus type 2 (AAV-2) capsid proteins (A. Wistuba, A. Kern, S. Weger, D. Grimm, and J. A. Kleinschmidt, J. Virol. 71:1341-1352, 1997). Here we describe the linear epitopes of A1, A69, and B1 which reside in VP1, VP2, and VP3, respectively, using gene fragment phage display library, peptide scan, and peptide competition experiments. In addition, MAbs A20, C24-B, C37-B, and D3 directed against conformational epitopes on AAV-2 capsids were characterized. Epitope sequences on the capsid surface were identified by enzyme-linked immunoabsorbent assay using AAV-2 mutants and AAV serotypes, peptide scan, and peptide competition experiments. A20 neutralizes infection following receptor attachment by binding an epitope formed during AAV-2 capsid assembly. The newly isolated antibodies C24-B and C37-B inhibit AAV-2 binding to cells, probably by recognizing a loop region involved in binding of AAV-2 to the cellular receptor. In contrast, binding of D3 to a loop near the predicted threefold spike does not neutralize AAV-2 infection. The identified antigenic regions on the AAV-2 capsid surface are discussed with respect to their possible roles in different steps of the viral life cycle.  相似文献   

17.
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.  相似文献   

18.
Assembly of poliovirus virions requires proteolytic cleavage of the P1 capsid precursor polyprotein between two separate glutamine-glycine (QG) amino acid pairs by the viral protease 3CD. In this study, we have investigated the effects on P1 polyprotein processing and subsequent assembly of processed capsid proteins caused by substitution of the glycine residue at the individual QG cleavage sites with valine (QG-->QV). P1 cDNAs encoding the valine substitutions were created by site-directed mutagenesis and were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses which expressed the mutant P1 precursors. The recombinant vaccinia virus-expressed mutant P1 polyproteins were analyzed for proteolytic processing defects in cells coinfected with a recombinant vaccinia virus (VVP3) that expresses the poliovirus 3CD protease and for processing and assembly defects by using a trans complementation system in which P1-expressing recombinant vaccinia viruses provide capsid precursor to a defective poliovirus genome that does not express functional capsid proteins (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The QV-substituted precursors were proteolytically processed at the altered sites both in cells coinfected with VVP3 and in cells coinfected with defective poliovirus, although the kinetics of cleavage at the altered sites were slower than those of cleavage at the wild-type QG site in the precursor. Completely processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor containing a valine at the amino terminus of VP3 (VP3-G001V) were unstable and failed to assemble stable subviral structures in cells coinfected with defective poliovirus. In contrast, capsid proteins derived from the P1 precursor with a valine substitution at the amino terminus of VP1 (VP1-G001V) assembled empty capsid particles but were deficient in assembling RNA-containing virions. The assembly characteristics of the VP1-G001V mutant were compared with those of a previously described VP3-VP1 cleavage site mutant (K. Kirkegaard and B. Nelsen, J. Virol. 64:185-194, 1990) which contained a deletion of the first four amino-terminal residues of VP1 (VP1-delta 1-4) and which was reconstructed for our studies into the recombinant vaccinia virus system. Complete proteolytic processing of the VP1-delta 1-4 precursor also occurred more slowly than complete cleavage of the wild-type precursor, and formation of virions was delayed; however, capsid proteins derived from the VP1-G001V mutant assembled RNA-containing virions less efficiently than those derived from the VP1-delta 1-4 precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.  相似文献   

20.
Recent studies have suggested that the herpes simplex type 1 (HSV-1) UL25 gene product, a minor capsid protein, is required for encapsidation but not cleavage of replicated viral DNA. This study set out to investigate the potential interactions of UL25 protein with other virus proteins and determine what properties it has for playing a role in DNA encapsidation. The UL25 protein is found in 42 +/- 17 copies per B capsid and is present in both pentons and hexons. We introduced green fluorescent protein (GFP) as a fluorescent tag into the N terminus of UL25 protein to identify its location in HSV-1-infected cells and demonstrated the relocation of UL25 protein from the cytoplasm into the nucleus at the late stage of HSV-1 infection. To clarify the cause of this relocation, we analyzed the interactions of UL25 protein with other virus proteins. The UL25 protein associates with VP5 and VP19C of virus capsids, especially of the penton structures, and the association with VP19C causes its relocation into the nucleus. Gel mobility shift analysis shows that UL25 protein has the potential to bind DNA. Moreover, the amino-terminal one-third of the UL25 protein is particularly important in DNA binding and forms a homo-oligomer. In conclusion, the UL25 gene product forms a tight connection with the capsid being linked with VP5 and VP19C, and it may play a role in anchoring the genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号