首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme A (CoA) biosynthesis is initiated by pantothenate kinase (PanK) and CoA levels are controlled through differential expression and feedback regulation of PanK isoforms. PanK2 is a mitochondrial protein in humans, but comparative genomics revealed that acquisition of a mitochondrial targeting signal was limited to primates. Human and mouse PanK2 possessed similar biochemical properties, with inhibition by acetyl-CoA and activation by palmitoylcarnitine. Mouse PanK2 localized in the cytosol, and the expression of PanK2 was higher in human brain compared to mouse brain. Differences in expression and subcellular localization should be considered in developing a mouse model for human PanK2 deficiency.  相似文献   

2.
Coenzyme A (CoA) biosynthesis is regulated by the pantothenate kinases (PanK), of which there are four active isoforms. The PanK1 isoform is selectively expressed in liver and accounted for 40% of the total PanK activity in this organ. CoA synthesis was limited using a Pank1 −/− knockout mouse model to determine whether the regulation of CoA levels was critical to liver function. The elimination of PanK1 reduced hepatic CoA levels, and fasting triggered a substantial increase in total hepatic CoA in both Pank1 −/− and wild-type mice. The increase in hepatic CoA during fasting was blunted in the Pank1 −/− mouse, and resulted in reduced fatty acid oxidation as evidenced by abnormally high accumulation of long-chain acyl-CoAs, acyl-carnitines, and triglycerides in the form of lipid droplets. The Pank1 −/− mice became hypoglycemic during a fast due to impaired gluconeogenesis, although ketogenesis was normal. These data illustrate the importance of PanK1 and elevated liver CoA levels during fasting to support the metabolic transition from glucose utilization and fatty acid synthesis to gluconeogenesis and fatty acid oxidation. The findings also suggest that PanK1 may be a suitable target for therapeutic intervention in metabolic disorders that feature hyperglycemia and hypertriglyceridemia.  相似文献   

3.
4.
The human Ogg1 glycosylase is responsible for repairing 8-oxo-7,8-dihydroguanine (8-oxoG) in both nuclear and mitochondrial DNA. Two distinct Ogg1 isoforms are present; α-Ogg1, which mainly localizes to the nucleus and β-Ogg1, which localizes only to mitochondria. We recently showed that mitochondria from ρ0 cells, which lack mitochondrial DNA, have similar 8-oxoG DNA glycosylase activity to that of wild-type cells. Here, we show that β-Ogg1 protein levels are ~80% reduced in ρ0 cells, suggesting β-Ogg1 is not responsible for 8-oxoG incision in mitochondria. Thus, we characterized the biochemical properties of recombinant β-Ogg1. Surprisingly, recombinant β-Ogg1 did not show any significant 8-oxoG DNA glycosylase activity in vitro. Since β-Ogg1 lacks the C-terminal αO helix present in α-Ogg1, we generated mutant proteins with various amino acid substitutions in this domain. Of the seven amino acid positions substituted (317–323), we identified Val-317 as a novel critical residue for 8-oxoG binding and incision. Our results suggest that the αO helix is absolutely necessary for 8-oxoG DNA glycosylase activity, and thus its absence may explain why β-Ogg1 does not catalyze 8-oxoG incision in vitro. Western blot analysis revealed the presence of significant amounts of α-Ogg1 in human mitochondria. Together with previous localization studies in vivo, this suggests that α-Ogg1 protein may provide the 8-oxoG DNA glycosylase activity for the repair of these lesions in human mitochondrial DNA. β-Ogg1 may play a novel role in human mitochondria.  相似文献   

5.
Protein phosphatase (PP) 2A is a heterotrimeric enzyme regulated by specific subunits. The B56 (or B′/PR61/PPP2R5) class of B-subunits direct PP2A or its substrates to different cellular locations, and the B56α, -β, and -ϵ isoforms are known to localize primarily in the cytoplasm. Here we studied the pathways that regulate B56α subcellular localization. We detected B56α in the cytoplasm and nucleus, and at the nuclear envelope and centrosomes, and show that cytoplasmic localization is dependent on CRM1-mediated nuclear export. The inactivation of CRM1 by leptomycin B or by siRNA knockdown caused nuclear accumulation of ectopic and endogenous B56α. Conversely, CRM1 overexpression shifted B56α to the cytoplasm. We identified a functional nuclear export signal at the C terminus (NES; amino acids 451–469), and site-directed mutagenesis of the NES (L461A) caused nuclear retention of full-length B56α. Active NESs were identified at similar positions in the cytoplasmic B56-β and ϵ isoforms, but not in the nuclear-localized B56-δ or γ isoforms. The transient expression of B56α induced nuclear export of the PP2A catalytic (C) subunit, and this was blocked by the L461A NES mutation. In addition, B56α co-located with the PP2A active (A) subunit at centrosomes, and its centrosome targeting involved sequences that bind to the A-subunit. Fluorescence Recovery after Photobleaching (FRAP) assays revealed dynamic and immobile pools of B56α-GFP, which was rapidly exported from the nucleus and subject to retention at centrosomes. We propose that B56α can act as a PP2A C-subunit chaperone and regulates PP2A activity at diverse subcellular locations.  相似文献   

6.
7.
8.
The MKK7 Gene Encodes a Group of c-Jun NH2-Terminal Kinase Kinases   总被引:11,自引:3,他引:8       下载免费PDF全文
The c-Jun NH2-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) group and is an essential component of a signaling cascade that is activated by exposure of cells to environmental stress. JNK activation is regulated by phosphorylation on both Thr and Tyr residues by a dual-specificity MAPK kinase (MAPKK). Two MAPKKs, MKK4 and MKK7, have been identified as JNK activators. Genetic studies demonstrate that MKK4 and MKK7 serve nonredundant functions as activators of JNK in vivo. We report here the molecular cloning of the gene that encodes MKK7 and demonstrate that six isoforms are created by alternative splicing to generate a group of protein kinases with three different NH2 termini (α, β, and γ isoforms) and two different COOH termini (1 and 2 isoforms). The MKK7α isoforms lack an NH2-terminal extension that is present in the other MKK7 isoforms. This NH2-terminal extension binds directly to the MKK7 substrate JNK. Comparison of the activities of the MKK7 isoforms demonstrates that the MKK7α isoforms exhibit lower activity, but a higher level of inducible fold activation, than the corresponding MKK7β and MKK7γ isoforms. Immunofluorescence analysis demonstrates that these MKK7 isoforms are detected in both cytoplasmic and nuclear compartments of cultured cells. The presence of MKK7 in the nucleus was not, however, required for JNK activation in vivo. These data establish that the MKK4 and MKK7 genes encode a group of protein kinases with different biochemical properties that mediate activation of JNK in response to extracellular stimuli.  相似文献   

9.
A-kinase anchoring proteins (AKAPs) are a family of scaffolding proteins that target PKA and other signaling molecules to cellular compartments and thereby spatiotemporally define cellular signaling events. The AKAP18 family comprises AKAP18α, AKAP18β, AKAP18γ, and AKAP18δ. The δ isoform targets PKA and phosphodiesterase PDE4D to AQP2 (aquaporin-2)-bearing vesicles to orchestrate the acute regulation of body water balance. Therefore, AKAP18δ must adopt a membrane localization that seems at odds with (i) its lack of palmitoylation or myristoylation sites that tailor its isoforms AKAP18α and AKAP18β to membrane compartments and (ii) the high sequence identity to the preferentially cytoplasmic AKAP18γ. Here, we show that the electrostatic attraction of the positively charged amino acids of AKAP18δ to negatively charged lipids explains its membrane targeting. As revealed by fluorescence correlation spectroscopy, the binding constant of purified AKAP18δ fragments to large unilamellar vesicles correlates (i) with the fraction of net negatively charged lipids in the bilayer and (ii) with the total amount of basic residues in the protein. Although distantly located on the sequence, these positively charged residues concentrate in the tertiary structure and form a clear binding surface. Thus, specific recruitment of the AKAP18δ-based signaling module to membranes such as those of AQP2-bearing vesicles must be achieved by additional mechanisms, most likely compartment-specific protein-protein interactions.  相似文献   

10.
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.  相似文献   

11.
12.
Pantothenate kinase catalyzes a key regulatory step in coenzyme A biosynthesis, and there are four mammalian genes that encode isoforms of this enzyme. Pantothenate kinase isoform PanK3 is highly related to the previously characterized PanK1beta isoform (79% identical, 91% similar), and these two almost identical proteins are expressed most highly in the same tissues. PanK1beta and PanK3 had very similar molecular sizes, oligomeric form, cytoplasmic cellular location, and kinetic constants for ATP and pantothenate. However, these two PanK isoforms possessed distinct regulatory properties. PanK3 was significantly more sensitive to feedback regulation by acetyl-CoA (IC50 = 1 microm) than PanK1beta (IC50 = 10 microm), and PanK3 was stringently regulated by long-chain acyl-CoA (IC50 = 2 microm), whereas PanK1beta was not. Domain swapping experiments localized the difference in the two proteins to a 48-amino-acid domain, where they are the most divergent. Consistent with these more stringent regulatory properties, metabolic labeling experiments showed that coenzyme A (CoA) levels in cells overexpressing PanK3 were lower than in cells overexpressing an equivalent amount of PanK1beta. Thus, the distinct regulatory properties exhibited by the family of the pantothenate kinases allowed the rate of CoA biosynthesis to be controlled by regulatory signals from CoA thioesters involved in different branches of intermediary metabolism.  相似文献   

13.
Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the native endothelium.  相似文献   

14.
Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca2+-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca2+ overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain–binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca2+ channel activity at the plasma membrane, resulting in the inhibition of Ca2+-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.  相似文献   

15.
Protein phosphatase-1 (PP-1) is involved in the regulation of numerous metabolic processes in mammalian cells. The major isoforms of PP-1, α, γ1, and δ, have nearly identical catalytic domains, but they vary in sequence at their extreme NH2 and COOH termini. With specific antibodies raised against the unique COOH-terminal sequence of each isoform, we find that the three PP-1 isoforms are each expressed in all mammalian cells tested, but that they localize within these cells in a strikingly distinct and characteristic manner. Each isoform is present both within the cytoplasm and in the nucleus during interphase. Within the nucleus, PP-1 α associates with the nuclear matrix, PP-1 γ1 concentrates in nucleoli in association with RNA, and PP-1 δ localizes to nonnucleolar whole chromatin. During mitosis, PP-1 α is localized to the centrosome, PP-1 γ1 is associated with microtubules of the mitotic spindle, and PP-1 δ strongly associates with chromosomes. We conclude that PP-1 isoforms are targeted to strikingly distinct and independent sites in the cell, permitting unique and independent roles for each of the isoforms in regulating discrete cellular processes.  相似文献   

16.
17.
18.
19.
The inhibitory neurotransmitter GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD) in neurons and in pancreatic β-cells in islets of Langerhans where it functions as a paracrine and autocrine signaling molecule regulating the function of islet endocrine cells. The localization of the two non-allelic isoforms GAD65 and GAD67 to vesicular membranes is important for rapid delivery and accumulation of GABA for regulated secretion. While the membrane anchoring and trafficking of GAD65 are mediated by intrinsic hydrophobic modifications, GAD67 remains hydrophilic, and yet is targeted to vesicular membrane pathways and synaptic clusters in neurons by both a GAD65-dependent and a distinct GAD65-independent mechanism. Herein we have investigated the membrane association and targeting of GAD67 and GAD65 in monolayer cultures of primary rat, human, and mouse islets and in insulinoma cells. GAD65 is primarily detected in Golgi membranes and in peripheral vesicles distinct from insulin vesicles in β-cells. In the absence of GAD65, GAD67 is in contrast primarily cytosolic in β-cells; its co-expression with GAD65 is necessary for targeting to Golgi membranes and vesicular compartments. Thus, the GAD65-independent mechanism for targeting of GAD67 to synaptic vesicles in neurons is not functional in islet β-cells. Therefore, only GAD65:GAD65 homodimers and GAD67:GAD65 heterodimers, but not the GAD67:GAD67 homodimer gain access to vesicular compartments in β-cells to facilitate rapid accumulation of newly synthesized GABA for regulated secretion and fine tuning of GABA-signaling in islets of Langerhans.  相似文献   

20.

Aims

Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β) have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells.

Methods and Results

Human primary vascular smooth muscle cells (VSMCs) and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS) upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001) and with IL-1β + areas (R2 = 0.68, P<0.001). MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area.

Conclusions

Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号