共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell host & microbe》2014,15(5):537-550
- Download : Download high-res image (411KB)
- Download : Download full-size image
2.
Daniel Lim Daniel A. Gold Lindsay Julien Emily E. Rosowski Wendy Niedelman Michael B. Yaffe Jeroen P. J. Saeij 《The Journal of biological chemistry》2013,288(48):34968-34980
At least a third of the human population is infected with the intracellular parasite Toxoplasma gondii, which contributes significantly to the disease burden in immunocompromised and neutropenic hosts and causes serious congenital complications when vertically transmitted to the fetus. Genetic analyses have identified the Toxoplasma ROP18 Ser/Thr protein kinase as a major factor mediating acute virulence in mice. ROP18 is secreted into the host cell during the invasion process, and its catalytic activity is required for the acute virulence phenotype. However, its precise molecular function and regulation are not fully understood. We have determined the crystal structure of the ROP18 kinase domain, which is inconsistent with a previously proposed autoinhibitory mechanism of regulation. Furthermore, a sucrose molecule bound to our structure identifies an additional ligand-binding pocket outside of the active site cleft. Mutational analysis confirms an important role for this pocket in virulence. 相似文献
3.
Michael L. Reese Niket Shah John C. Boothroyd 《The Journal of biological chemistry》2014,289(40):27849-27858
The Red Queen hypothesis proposes that there is an evolutionary arms race between host and pathogen. One possible example of such a phenomenon could be the recently discovered interaction between host defense proteins known as immunity-related GTPases (IRGs) and a family of rhoptry pseudokinases (ROP5) expressed by the protozoan parasite, Toxoplasma gondii. Mouse IRGs are encoded by an extensive and rapidly evolving family of over 20 genes. Similarly, the ROP5 family is highly polymorphic and consists of 4–10 genes, depending on the strain of Toxoplasma. IRGs are known to be avidly bound and functionally inactivated by ROP5 proteins, but the molecular basis of this interaction/inactivation has not previously been known. Here we show that ROP5 uses a highly polymorphic surface to bind adjacent to the nucleotide-binding domain of an IRG and that this produces a profound allosteric change in the IRG structure. This has two dramatic effects: 1) it prevents oligomerization of the IRG, and 2) it alters the orientation of two threonine residues that are targeted by the Toxoplasma Ser/Thr kinases, ROP17 and ROP18. ROP5s are highly specific in the IRGs that they will bind, and the fact that it is the most highly polymorphic surface of ROP5 that binds the IRG strongly supports the notion that these two protein families are co-evolving in a way predicted by the Red Queen hypothesis. 相似文献
4.
Wendy Niedelman Daniel A. Gold Emily E. Rosowski Joris K. Sprokholt Daniel Lim Ailan Farid Arenas Mariane B. Melo Eric Spooner Michael B. Yaffe Jeroen P. J. Saeij 《PLoS pathogens》2012,8(6)
The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans. 相似文献
5.
Toxoplasma gondii is an obligate intracellular parasite for which the discharge of apical organelles named rhoptries is a key event in host cell invasion. Among rhoptry proteins, ROP2, which is the prototype of a large protein family, is translocated in the parasitophorous vacuole membrane during invasion. The ROP2 family members are related to protein-kinases, but only some of them are predicted to be catalytically active, and none of the latter has been characterized so far. We show here that ROP18, a member of the ROP2 family, is located in the rhoptries and re-localises at the parasitophorous vacuole membrane during invasion. We demonstrate that a recombinant ROP18 catalytic domain (amino acids 243-539) possesses a protein-kinase activity and phosphorylate parasitic substrates, especially a 70-kDa protein of tachyzoites. Furthermore, we show that overexpression of ROP18 in transgenic parasites causes a dramatic increase in intra-vacuolar parasite multiplication rate, which is correlated with kinase activity. Therefore, we demonstrate, to our knowledge for the first time, that rhoptries can discharge active protein-kinases upon host cell invasion, which can exert a long-lasting effect on intracellular parasite development and virulence. 相似文献
6.
Michael S. Behnke Asis Khan Elvin J. Lauron John R. Jimah Qiuling Wang Niraj H. Tolia L. David Sibley 《PLoS genetics》2015,11(8)
Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection. 相似文献
7.
8.
Giuliano Bonfá Luciana Benevides Maria do Carmo Souza Denise Morais Fonseca Tiago Wilson Patriarca Mineo Marcos Ant?nio Rossi Neide Maria Silva Jo?o Santana Silva Cristina Ribeiro de Barros Cardoso 《PloS one》2014,9(8)
CCR5, an important receptor related to cell recruitment and inflammation, is expressed during experimental Toxoplasma gondii infection. However, its role in the immunopathology of toxoplasmosis is not clearly defined yet. Thus, we inoculated WT and CCR5-/- mice with a sub lethal dose of the parasite by oral route. CCR5-/- mice were extremely susceptible to infection, presenting higher parasite load and lower tissue expression of IL-12p40, IFN-γ, TNF, IL-6, iNOS, Foxp3, T-bet, GATA-3 and PPARα. Although both groups presented inflammation in the liver with prominent neutrophil infiltration, CCR5-/- mice had extensive tissue damage with hepatocyte vacuolization, steatosis, elevated serum triglycerides and transaminases. PPARα agonist Gemfibrozil improved the vacuolization but did not rescue CCR5-/- infected mice from high serum triglycerides levels and enhanced mortality. We also found intense inflammation in the ileum of CCR5-/- infected mice, with epithelial ulceration, augmented CD4 and decreased frequency of NK cells in the gut lamina propria. Most interestingly, these findings were accompanied by an outstanding accumulation of neutrophils in the ileum, which seemed to be involved in the gut immunopathology, once the depletion of these cells was accompanied by reduced local damage. Altogether, these data demonstrated that CCR5 is essential to the control of T. gondii infection and to maintain the metabolic, hepatic and intestinal integrity. These findings add novel information on the disease pathogenesis and may be relevant for directing future approaches to the treatment of multi-deregulated diseases. 相似文献
9.
10.
The Toxoplasma gondii rhoptry protein ROP18 is an Irga6‐specific kinase and regulated by the dense granule protein GRA7
下载免费PDF全文

Thomas Hermanns Urs B. Müller Stephanie Könen‐Waisman Jonathan C. Howard Tobias Steinfeldt 《Cellular microbiology》2016,18(2):244-259
In mice, avirulent strains (e.g. types II and III) of the protozoan parasite Toxoplasma gondii are restricted by the immunity‐related GTPase (IRG) resistance system. Loading of IRG proteins onto the parasitophorous vacuolar membrane (PVM) is required for vacuolar rupture resulting in parasite clearance. In virulent strain (e.g. type I) infections, polymorphic effector proteins ROP5 and ROP18 cooperate to phosphorylate and thereby inactivate mouse IRG proteins to preserve PVM integrity. In this study, we confirmed the dense granule protein GRA7 as an additional component of the ROP5/ROP18 kinase complex and identified GRA7 association with the PVM by direct binding to ROP5. The absence of GRA7 results in reduced phosphorylation of Irga6 correlated with increased vacuolar IRG protein amounts and attenuated virulence. Earlier work identified additional IRG proteins as targets of T. gondii ROP18 kinase. We show that the only specific target of ROP18 among IRG proteins is in fact Irga6. Similarly, we demonstrate that GRA7 is strictly an Irga6‐specific virulence effector. This identifies T. gondii GRA7 as a regulator for ROP18‐specific inactivation of Irga6. The structural diversity of the IRG proteins implies that certain family members constitute additional specific targets for other yet unknown T. gondii virulence effectors. 相似文献
11.
根据已发表基因序列(GenBank登录号为Z36906)设计引物,以弓形虫(Toxoplasma gondii)上海本地株的基因组DNA为模板,扩增编码ROP2(rhpotry protein2)蛋白的基因片段,定向克隆至表达质粒pET32a(+),重组质粒经限制性酶切鉴定后测序,结果表明插入片段长度为1044bp,与GenBank上登录的序列相比,同源性为96%-100%,其中与弓形虫RH株的rop2基因同源性为100%。重组原核表达质粒pET32a-rop2转化至大肠杆菌BL21(DE3),经诱导可表达分子量约60.9kD的融合蛋白,能被感染弓形虫RH株的绵羊阳性血清识别。 相似文献
12.
Toxoplasma gondii, as many intracellular parasites, is separated from the cytosol of its host cell by a parasitophorous vacuole membrane (PVM). This vacuole forms during host cell invasion and parasite apical organelles named rhoptries discharge proteins that associate with its membrane during this process. We report here the characterization of the rhoptry protein ROP5, which is a new member of the ROP2 family. Contrasting with what is known for other ROP2 family proteins, ROP5 is not processed during trafficking to rhoptries. We show here that ROP5 is secreted during invasion and associates with the PVM. Using differential permeabilization of infected cells, we have shown that ROP5 exposes its C-terminus towards the host cell cytoplasm, which corresponds to a reverse topology compared with ROP2 and ROP4. Taken together with recent modelling data suggesting that the C-terminal hydrophobic domain hitherto described as transmembrane may correspond to a hydrophobic helix buried in the catalytic domain of kinase-related proteins, these findings call for a reappraisal of the current view of ROP2 family proteins association with the PVM. 相似文献
13.
The Toxoplasma gondii rhoptry protein ROP4 is secreted into the parasitophorous vacuole and becomes phosphorylated in infected cells 总被引:8,自引:0,他引:8
下载免费PDF全文

Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function. 相似文献
14.
The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling 总被引:1,自引:0,他引:1
El Hajj H Demey E Poncet J Lebrun M Wu B Galéotti N Fourmaux MN Mercereau-Puijalon O Vial H Labesse G Dubremetz JF 《Proteomics》2006,6(21):5773-5784
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion. 相似文献
15.
16.
Background
Peroxidase represents a heterogeneous group of distinct enzyme family that plays extremely diverse biological functions. Ascorbate peroxidase from Leishmania major (LmAPX) has been shown to be central to the redox defense system of Leishmania. To investigate further its exact physiological role in Leishmania, we attempted to create LmAPX -knockout mutants by gene replacement in L. major strains.Methodology/Principal Findings
The null mutant cell culture contains a higher percentage of metacyclic and apoptotic cells compared to both wild type and LmAPX overexpressing cells. Flowcytometric analysis reveals the presence of a higher concentration of intracellular H2O2, indicative of increased oxidative stress in parasites lacking LmAPX. IC50 value for exogenously added H2O2 shows that deletion of LmAPX in L. major renders the cell more susceptible to H2O2. Real time PCR studies demonstrate an elevated mRNA level of non-selenium glutathione peroxidase in LmAPX null mutant cell line, suggesting that these enzymes were induced to compensate the LmAPX enzyme. The null mutant cells exhibit hypervirulence after infection with macrophages as well as inoculation into BALB/c mice; in contrast, overexpressing cells show avirulence.Conclusions/Significance
Collectively, these data provide strong evidence that LmAPX is an important factor for controlling parasite differentiation and survival within macrophages. 相似文献17.
Lin Wang He Chen Daohua Liu Xingxing Huo Jiangmei Gao Xiaorong Song Xiucai Xu Kaiquan Huang Wenqi Liu Yong Wang Fangli Lu Zhao-Rong Lun Qingli Luo Xuelong Wang Jilong Shen 《PloS one》2013,8(1)
Background
Recent population structure studies of T. gondii revealed that a few major clonal lineages predominated in different geographical regions. T. gondii in South America is genetically and biologically divergent, whereas this parasite is remarkably clonal in North America and Europe with a few major lineages including Types I, II and III. Information on genotypes and mouse virulence of T. gondii isolates from China is scarce and insufficient to investigate its population structure, evolution, and transmission.Methodology/Principal Findings
Genotyping of 23 T. gondii isolates from different hosts using 10 markers for PCR-restriction fragment length polymorphism analyses (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed five genotypes; among them three genotypes were atypical and two were archetypal. Fifteen strains belong to the Chinese 1 lineage, which has been previously reported as a widespread lineage from swine, cats, and humans in China. Two human isolates fall into the type I and II lineages and the remaining isolates belong to two new atypical genotypes (ToxoDB#204 and #205) which has never been reported in China. Our results show that these genotypes of T. gondii isolates are intermediately or highly virulent in mice except for the strain TgCtwh6, which maintained parasitemia in mice for 35 days post infection although it possesses the uniform genotype of Chinese 1. Additionally, phylogenetic network analyses of all isolates of genotype Chinese 1 are identical, and there is no variation based on the sequence data generated for four introns (EF1, HP2, UPRT1 and UPRT7) and two dense granule proteins (GRA6 and GRA7).Conclusion/Significance
A limited genetic diversity was found and genotype Chinese 1 (ToxoDB#9) is dominantly circulating in mainland China. The results will provide a useful profile for deep insight to the population structure, epidemiology and biological characteristics of T. gondii in China. 相似文献18.
Igarashi M Kano F Tamekuni K Kawasaki PM Navarro IT Vidotto O Vidotto MC Machado RZ Garcia JL 《Genetics and molecular research : GMR》2008,7(2):305-313
Toxoplasma gondii is an intracellular obligate protozoan, which infects humans and warm-blooded animals. The aim of the present study was to clone the rop2, gra5 and gra7 genes from T. gondii RH strain and to produce recombinant proteins. The rop2, gra5 and gra7 gene fragments produced by polymerase chain reaction were cloned into the pET102/D-TOPO vector which contains thioredoxin and polyhistidine tags at the C- and N-ends, respectively, and is expressed in Escherichia coli BL21(DE-3). The expression fusion proteins were found almost entirely in the insoluble form in the cell lysate. These recombinant proteins were purified with an Ni-NTA column. Concentrations of the recombinant antigens produced in the E. coli BL21-star ranged from 300 to 500 microg/ml growth media, which was used to immunize rabbits. We observed an identity ranging from 96 to 97% when nucleotide sequences were compared to GenBank database sequences. Immunocharacterization of proteins was made by indirect immunofluorescence assay. These proteins will be used for serodiagnosis and vaccination. 相似文献
19.
Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis. 相似文献
20.
Marchant J Cowper B Liu Y Lai L Pinzan C Marq JB Friedrich N Sawmynaden K Liew L Chai W Childs RA Saouros S Simpson P Roque Barreira MC Feizi T Soldati-Favre D Matthews S 《The Journal of biological chemistry》2012,287(20):16720-16733
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system. 相似文献